A neural network is a computational model inspired by the structure and function of the human brain. It consists of interconnected artificial neurons that process and transmit information, enabling machine learning tasks such as pattern recognition, classification, and regression by learning from labeled data.
Exploring the financial challenges faced by expanding enterprises like the ZH group, researchers present a strategic financial control strategy incorporating intelligent algorithms. Through practical implementation and theoretical analysis, they highlight the efficacy of reverse neural networks and particle swarm optimization in enhancing decision-making and mitigating financial risks.
Research led by Oregon State University and the U.S. Forest Service indicates that artificial intelligence can effectively analyze acoustic data to monitor the elusive marbled murrelet, offering a promising tool for tracking this threatened seabird's population.
Researchers propose a solution for the Flexible Double Shop Scheduling Problem (FDSSP) by integrating a reinforcement learning (RL) algorithm with a Deep Temporal Difference Network (DTDN), achieving superior performance in minimizing makespan.
Researchers discussed the integration of machine learning (ML) algorithms, particularly convolutional neural networks (CNNs), to automate cell quantification and lineage classification in microscopy images. Despite challenges like misclassifications for certain cell strains, the approach showed promising accuracy exceeding 86% for five strains.
Researchers introduced Deep5HMC, a machine learning model combining advanced feature extraction techniques and deep neural networks to accurately detect 5-hydroxymethylcytosine (5HMC) in RNA samples. Deep5HMC surpassed previous methods, offering promise for early disease diagnosis, particularly in conditions like cancer and cardiovascular disease, by efficiently identifying RNA modifications.
Researchers combined X-ray tomography with machine learning (ML) to analyze degradation in Pb-free solder balls, revealing intergranular fatigue cracking as the primary failure mode during thermal cycling. Their study investigated the effect of bismuth (Bi) content on solder properties, enhancing fatigue resistance and delaying recrystallization. The findings advance the development of sustainable solder alloys and offer insights for optimizing microelectronics reliability.
Researchers introduce the regularized recurrent inference machine (rRIM), a novel ML method integrating physical principles for extracting pairing glue functions from optical spectra in superconductivity research. The rRIM offers robustness to noise, flexibility with out-of-distribution data, and reduced data requirements, bridging gaps in understanding complex physical phenomena.
Researchers developed a modular spiking neural network (SNN) on a mixed-signal neuromorphic device to process intraoperative electrocorticography (ECoG) in real time, efficiently detecting interictal epileptiform discharges (IED) and high-frequency oscillations (HFO). The system, integrated into the BCI2000 framework, accurately identified IED-HFO co-occurrences, showcasing potential for automated remote detection in clinical settings.
Researchers investigated the utility of AI-driven analysis of body composition from CT scans to predict mortality in patients undergoing transcatheter aortic valve implantation (TAVI). Using the AutoMATiCA neural network, they extracted parameters such as skeletal muscle index (SMI) and adipose tissue density from CT scans of 866 patients.
Researchers introduced a deep convolutional neural network (DCNN) model for accurately detecting and classifying grape leaf diseases. Leveraging a dataset of grape leaf images, the DCNN model outperformed conventional CNN models, demonstrating superior accuracy and reliability in identifying black rot, ESCA, leaf blight, and healthy specimens.
Researchers integrated gradient quantization (GQ) into DenseNet architecture to improve image recognition (IR). By optimizing feature reuse and introducing GQ for parallel training, they achieved superior accuracy and accelerated training speed, overcoming communication bottlenecks.
Researchers introduced RST-Net, a novel deep learning model for plant disease prediction, combining residual convolutional networks and Swin transformers. Testing on a benchmark dataset showed superior performance over state-of-the-art models, with potential applications in smart agriculture and precision farming.
Chinese researchers present YOLOv8-PG, a lightweight convolutional neural network tailored for accurate detection of real and fake pigeon eggs in challenging environments. By refining key model components and leveraging a novel loss function, YOLOv8-PG outperforms existing models in accuracy while maintaining efficiency, offering promising applications for automated egg collection in pigeon breeding.
This study in Nature explores the application of convolutional neural networks (CNNs) in classifying infrared (IR) images for concealed object detection in security scanning. Leveraging a ResNet-50 model and transfer learning, the researchers refined pre-processing techniques such as k-means and fuzzy-c clustering to improve classification accuracy.
This study explores the transformative impact of deep learning (DL) techniques on computer-assisted interventions and post-operative surgical video analysis, focusing on cataract surgery. By leveraging large-scale datasets and annotations, researchers developed DL-powered methodologies for surgical scene understanding and phase recognition.
Researchers present the MPDB dataset, capturing physiological responses of 35 participants during a driving simulator experiment. Combining EEG, ECG, EMG, GSR, and eye-tracking data with driving behaviors, the dataset offers insights into human cognitive functions while driving. Detailed collection methods, storage structures, and validation procedures ensure the dataset's reliability and effectiveness in studying driver behavior, paving the way for advancements in traffic psychology and behavior modeling.
Researchers developed a deep neural network (DNN) ensemble to automatically detect and classify epiretinal membranes (ERMs) in optical coherence tomography (OCT) scans of the macula. Leveraging over 11,000 images, the ensemble achieved high accuracy, particularly in identifying small ERMs, aided by techniques like mixup for data augmentation and t-stochastic neighborhood embeddings (t-SNE) for dimensional reduction.
Researchers developed a novel AI method, P-GAN, to improve the visualization of retinal pigment epithelial (RPE) cells using adaptive optics optical coherence tomography (AO-OCT). By transforming single noisy images into detailed representations of RPE cells, this approach enhances contrast and reduces imaging time, potentially revolutionizing ophthalmic diagnostics and personalized treatment strategies for retinal conditions.
Scholars utilized machine learning techniques to analyze instances of sexual harassment in Middle Eastern literature, employing lexicon-based sentiment analysis and deep learning architectures. The study identified physical and non-physical harassment occurrences, highlighting their prevalence in Anglophone novels set in the region.
Researchers introduced two novel predictive models employing metaheuristic algorithms, Backtracking Search Algorithm (BSA) and Equilibrium Optimizer (EO), combined with artificial neural networks (ANNs) to assess the bearing capacity of footings on two-layered soil masses. Both BSA-ANN and EO-ANN models demonstrated improved prediction accuracy over conventional ANN models, with EO exhibiting superior performance.
Terms
While we only use edited and approved content for Azthena
answers, it may on occasions provide incorrect responses.
Please confirm any data provided with the related suppliers or
authors. We do not provide medical advice, if you search for
medical information you must always consult a medical
professional before acting on any information provided.
Your questions, but not your email details will be shared with
OpenAI and retained for 30 days in accordance with their
privacy principles.
Please do not ask questions that use sensitive or confidential
information.
Read the full Terms & Conditions.