Machine learning is a subfield of artificial intelligence that focuses on developing algorithms and models capable of automatically learning and making predictions or decisions from data without being explicitly programmed. It involves training models on labeled datasets to recognize patterns and make accurate predictions or classifications in new, unseen data.
Researchers propose leveraging a Quality Management System (QMS) tailored to healthcare AI as a systematic solution to bridge the translation gap from research to clinical application. The QMS, aligned with ISO 13485 and risk-based approaches, addresses key components enabling healthcare organizations to navigate regulatory complexities, minimize redundancy, and optimize the ethical deployment of AI in patient care.
Researchers propose a groundbreaking framework, PGL, for autonomous and programmable graph representation learning (PGL) in heterogeneous computing systems. Focused on optimizing program execution, especially in applications like autonomous vehicles and machine vision, PGL leverages machine learning to dynamically map software computations onto CPUs and GPUs.
This pioneering study investigated the accuracy of smartphone-based estimation of body composition in youth soccer players, utilizing a novel app (Mobile Fit) for digital anthropometric assessments. Researchers evaluated its validity against dual-energy X-ray absorptiometry (DXA) and developed population-specific equations for appendicular lean mass and body fat percentage estimation.
Researchers emphasize the growing significance of radar-based human activity recognition (HAR) in safety and surveillance, highlighting its advantages over vision-based sensing in challenging conditions. The study reviews classical Machine Learning (ML) and Deep Learning (DL) approaches, with DL's advantage in avoiding manual feature extraction and ML's robust empirical basis. A comparative study on benchmark datasets evaluates performance and computational efficiency, aiming to establish a standardized assessment framework for radar-based HAR techniques.
Researchers present an intelligent framework, integrating a Group Method of Data Handling (GMDH) neural network and Shapley Additive Explanations (SHAP) analysis, to predict free atmospheric corrosion in marine steel structures. Leveraging historical sensor data, the framework demonstrates high forecasting accuracy, with optimal parameter selection enhancing performance. The SHAP analysis reveals the impact of environmental factors on corrosion, providing valuable insights into the dynamics of atmospheric corrosion in marine settings.
This study unveils a groundbreaking dataset of over 1.3 million solar magnetogram images paired with solar flare records. Spanning two solar cycles, the dataset from NASA's Solar Dynamics Observatory facilitates advanced studies in solar physics and space weather prediction. The innovative approach, integrating multi-source information and applying machine learning models, showcases the dataset's potential for improving our understanding of solar phenomena and paving the way for highly accurate automated solar flare forecasting systems.
This research delves into the realm of electronic board manufacturing, aiming to enhance reliability and lifespan through the automated detection of solder splashes using cutting-edge machine learning algorithms. The study meticulously compares object detection models, emphasizing the efficacy of the custom-trained YOLOv8n model with 1.9 million parameters, showcasing a rapid 90 ms detection speed and an impressive mean average precision of 96.6%. The findings underscore the potential for increased efficiency and cost savings in electronic board manufacturing, marking a significant shift from manual inspection to advanced machine learning techniques.
Researchers introduce artificial neural networks (ANNs) as a powerful tool for forecasting the generation of ten common types of demolition waste from buildings. Analyzing data from 150 buildings in South Korean redevelopment zones, the research develops specialized ANN prediction models for each waste category, achieving significant performance gains over past studies.
This article introduces a novel machine learning approach for non-invasive broiler weight estimation in large-scale production. Utilizing Gaussian mixture models, Isolation Forest, and OPTICS algorithm in a two-stage clustering process, the researchers achieved accurate predictions of individual broiler weights. The comprehensive methodology, combining polynomial fitting, gray models, and adaptive forecasting, offers a promising and cost-effective solution for precise broiler weight monitoring in large-scale farming setups, as evidenced by considerable accuracy in evaluations across 111 datasets.
This article explores the algorithmic foundations and applications of autoencoders in molecular informatics and drug discovery, with a focus on their role in data-driven molecular representation and constructive molecular design. The study highlights the versatility of autoencoders, especially variational autoencoders (VAEs), in handling diverse molecular data types and their applications in tasks such as dimensionality reduction, preprocessing, and generative molecular design.
Researchers introduce machine learning (ML) models for predicting the bulk modulus in High Entropy Alloys (HEA), a crucial property for aerospace and high-pressure applications. The Gradient Boosting Classifier (GBC) excels in HEA classification, while the LASSO Regression model predicts bulk modulus values, accelerating the discovery and design of HEAs with superior mechanical traits. This pioneering study addresses a significant gap in HEA research and offers a pathway for optimized alloy compositions in diverse applications.
Researchers introduce an innovative approach for speech-emotion analysis employing a multi-stage process involving spectro-temporal modulation, entropy features, convolutional neural networks, and a combined GC-ECOC classification model. Evaluating against Berlin and ShEMO datasets, the method showcases remarkable performance, achieving average accuracies of 93.33% and 85.73%, respectively, surpassing existing methods by at least 2.1% in accuracy and showing significant potential for improved emotion recognition in speech across various applications.
Researchers propose a novel deep learning (DL) method utilizing convolutional neural networks (CNNs) for automatic sediment core analysis. The DL-based approach employs semantic segmentation on digital images of sediment cores, demonstrating high accuracy in interpreting sedimentary facies, offering a precise, efficient tool for subsurface stratigraphic modeling in geoscience applications.
Researchers introduced and evaluated four metaheuristic algorithms—teaching–learning-based optimization, sine cosine algorithm, water cycle algorithm, and electromagnetic field optimization—integrated with a multi-layer perceptron neural network for predicting dissolved oxygen concentration in the Klamath River. These algorithms optimized computational variables, improving DO prediction accuracy in water quality assessment.
This study conducts a systematic literature review to categorize critiques and challenges of the proposed European Artificial Intelligence Act (AIA). As AI governance becomes crucial, the AIA aims to regulate AI development and deployment, considering potential harms. The interdisciplinary Information Systems (IS) field's attention to societal AI dimensions highlights the need for a thorough analysis of the AIA, guiding responsible innovation amidst rapid advancements.
This paper explores the profound impact of artificial intelligence (AI) on art history, showcasing how algorithms decode intricate details in art compositions. The study reveals AI's role in analyzing poses, color palettes, brushwork, and perspectives, contributing to the understanding of artists' use of optical science. Additionally, AI aids in art restoration, uncovering hidden layers, reconstructing missing elements, and disproving theories.
A recent article in Nature Machine Intelligence delves into the progress and challenges of Differentiable Visual Computing (DVC). The study proposes a unified DVC pipeline, integrating differentiable geometry, physics, and animation, enhancing data efficiency, accuracy, and speed in machine learning applications for real-world physical systems. The authors review key aspects, including rendering, animation, and geometry, highlighting the potential of DVC to bridge the gap between visual computing and deep learning.
Researchers delve into the challenges of lifelong learning in AI, proposing specialized hardware accelerators for edge platforms. The study explores intricacies in design, outlines crucial features, and suggests metrics for evaluating these accelerators, emphasizing the co-evolution of models and hardware. The future vision involves reconfigurable architectures, innovative memory designs, and advancements in on-chip communication, calling for a holistic hardware-software co-design approach to enable efficient, adaptable, and robust lifelong learning systems in edge AI.
Researchers introduce a pioneering framework leveraging IoT and wearable technology to enhance the adaptability of AR glasses in the aviation industry. The multi-modal data processing system, employing kernel theory-based design and machine learning, classifies performance, offering a dynamic and adaptive approach for tailored AR information provision.
This article presents an ensemble learning approach utilizing convolutional neural networks (CNNs) for precise identification of medicinal plant species based solely on leaf images. The research addresses the challenges of manual identification by taxonomic experts and demonstrates how advanced AI techniques can significantly enhance the efficiency, reliability, and accessibility of plant recognition systems, showcasing potential applications in cataloging and utilizing medicinal plant biodiversity.
Terms
While we only use edited and approved content for Azthena
answers, it may on occasions provide incorrect responses.
Please confirm any data provided with the related suppliers or
authors. We do not provide medical advice, if you search for
medical information you must always consult a medical
professional before acting on any information provided.
Your questions, but not your email details will be shared with
OpenAI and retained for 30 days in accordance with their
privacy principles.
Please do not ask questions that use sensitive or confidential
information.
Read the full Terms & Conditions.