Artificial Intelligence (AI) refers to the simulation of human intelligence processes by machines, especially computer systems. These processes include learning (the acquisition of information and rules for using the information), reasoning (using rules to reach approximate or definite conclusions), and self-correction.
Stony Brook University and University of Edinburgh researchers introduce WSInfer, an open-source software ecosystem revolutionizing digital pathology. Enabling the sharing and reusability of deep learning models, WSInfer, with its patch-based classification and integration with QuPath, proves efficient, scalable, and user-friendly, marking a significant stride towards democratizing AI in pathology.
Researchers introduce the multi-feature fusion transformer (MFT) for named entity recognition (NER) in aerospace text. MFT, utilizing a unique structure and integrating radical features, outshines existing models, demonstrating exceptional performance and paving the way for enhanced AI applications in aerospace research.
This paper delves into the transformative role of attention-based models, including transformers, graph attention networks, and generative pre-trained transformers, in revolutionizing drug development. From molecular screening to property prediction and molecular generation, these models offer precision and interpretability, promising accelerated advancements in pharmaceutical research. Despite challenges in data quality and interpretability, attention-based models are poised to reshape drug discovery, fostering breakthroughs in human health and pharmaceutical science.
Researchers unveil the PHEME model series, introducing a breakthrough in speech generation. PHEME's efficient design, leveraging modularized encoding and non-autoregressive decoding, achieves near-human speech synthesis, providing a scalable solution that bridges the gap between quality and resource efficiency. This model not only outperforms counterparts like VALL-E and SoundStorm but also demonstrates the potential to revolutionize applications with its production-friendly and highly effective approach.
Researchers introduce an advanced wind speed prediction model using a refined Hilbert–Huang transform (HHT) with complementary ensemble empirical mode decomposition (CEEMD). Leveraging a dynamic neural network, this model significantly improves accuracy in wind speed time series modeling, addressing the challenges posed by the unpredictable nature of wind speeds. The optimized HHT-NAR model demonstrates superior performance in wind-rich and wind-limited areas, contributing to the effective scheduling and control of wind farms and promoting the stability of power systems for sustainable wind energy utilization.
In a comprehensive survey of 2,778 AI experts, predictions on artificial intelligence advancements emerged. Anticipating achievements like independent creation of payment processing sites and songs by renowned artists by 2028, the experts indicated a shift in estimates, with a 10% chance of machines surpassing humans in all tasks by 2027. The survey also uncovered concerns, with over 70% of respondents worrying about scenarios like AI-enabled misinformation and AI-driven control by authoritarian figures, emphasizing the need for research to address potential risks in AI systems.
Korean researchers introduce a groundbreaking framework marrying Explainable AI (XAI) and Zero-Trust Architecture (ZTA) for robust cyberdefense in marine communication networks. Their deep neural network, Zero-Trust Network Intrusion Detection System (NIDS), not only exhibits remarkable accuracy in classifying cyber threats but also integrates XAI methodologies, SHAP and LIME, to provide interpretable insights. This innovative approach fosters transparency and collaboration between AI systems and human experts, promising enhanced cybersecurity in marine, and potentially other, critical infrastructures.
Researchers leverage artificial intelligence and remote sensing data to assess water quality suitability for cage fish farming in reservoirs. The study showcases the effectiveness of AI techniques in predicting water temperature, dissolved oxygen, and total dissolved solids, offering an affordable and efficient solution for monitoring and optimizing cage aquaculture operations in shared water bodies.
Researchers propose an AI-powered posture classification system, employing MoveNet and machine learning, to address ergonomic challenges faced by agricultural workers. The study demonstrates the feasibility of leveraging AI for precise posture detection, offering potential advancements in safety practices and worker health within the demanding agricultural sector.
This article explores the revolutionary impact of AI and ML in biomedical research and healthcare, emphasizing the need for responsible and equitable integration. Addressing challenges in governance, infrastructure, and international collaboration, it advocates for a holistic approach to harness AI's transformative potential while prioritizing inclusivity and ethical considerations in shaping the future of healthcare.
This article explores the integration of artificial intelligence (AI), blockchain, and the Internet of Things (IoT) to enhance the safety of power equipment. The innovative wireless temperature monitoring system, incorporating real-time monitoring and intelligent anomaly detection, showcases the potential for proactive preventive measures, minimizing the risk of fire hazards in electric power engineering.
Researchers introduce a groundbreaking deep learning method, published in Medical Physics, to detect and measure motion artifacts in undersampled brain MRI scans. The approach, utilizing synthetic motion-corrupted data and a convolutional neural network, offers a potential safety measure for AI-based approaches, providing real-time alerts and insights for improved MRI reconstruction methods.
Researchers have unveiled innovative methods, utilizing lidar data and AI techniques, to precisely delineate river channels' bankfull extents. This groundbreaking approach streamlines large-scale topographic analyses, offering efficiency in flood risk mapping, stream rehabilitation, and tracking channel evolution, marking a significant leap in environmental mapping workflows.
The article emphasizes the pivotal role of Human Factors and Ergonomics (HFE) in addressing challenges and debates surrounding trust in automation, ethical considerations, user interface design, human-AI collaboration, and the psychological and behavioral aspects of human-robot interaction. Understanding knowledge gaps and ongoing debates is crucial for shaping the future development of HFE in the context of emerging technologies.
Researchers from the University of Tuscia, Italy, introduced a machine learning (ML)-based classification model to offer tailored support tools and learning strategies for university students with dyslexia. The model, trained on a self-evaluation questionnaire from over 1200 dyslexic students, demonstrated high accuracy in predicting effective methodologies, providing a personalized approach to enhance learning outcomes and well-being. The study emphasizes the potential applications in education, psychology, and tool/strategy development, encouraging future research directions and student involvement in the design process.
This paper explores the dynamic integration of artificial intelligence/machine learning (AI/ML) in biomedical research, emphasizing its pivotal role in predictive analysis across diverse domains. While acknowledging transformative potential, the paper highlights challenges such as inclusivity, synergy between computational models and human expertise, and standardization of clinical data, presenting them as opportunities for innovation in a transformative era for human health optimization through AI/ML in biomedical research.
Researchers question the notion of artificial intelligence (AI) surpassing human thought. It critiques Max Tegmark's definition of intelligence, highlighting the differences in understanding, implementation of goals, and the crucial role of creativity. The discussion extends to philosophical implications, emphasizing the overlooked aspects of the body, brain lateralization, and the vital role of glia cells, ultimately contending that human thought's richness and complexity remain beyond current AI capabilities.
Researchers introduce a groundbreaking Optical Tomography method employing Multi-Core Fiber-Optic Cell Rotation (MCF-OCR). This innovative system overcomes limitations in traditional optical tomography by utilizing an AI-driven reconstruction workflow, demonstrating superior accuracy in 3D reconstructions of live cells. The MCF-OCR system offers precise control over cell rotation, while the autonomous reconstruction workflow, powered by computer vision technologies, significantly enhances efficiency and accuracy in capturing detailed cellular morphology.
Researchers discuss the transformative role of Multimodal Large Language Models (MLLMs) in science education. Focusing on content creation, learning support, assessment, and feedback, the study demonstrates how MLLMs provide adaptive, personalized, and multimodal learning experiences, illustrating their potential in various educational settings beyond science.
This paper delves into the critical role of industrial robots equipped with gripping systems in modern manufacturing. The article emphasizes the need for automated customization of gripping solutions for efficiency and productivity. The proposed modular architecture, comprehensive classification, and machine-readable encoding paradigm offer a pathway for swift, contextually fitting grippers, ensuring flexible and dexterous robotic handling in Industry 4.0.
Terms
While we only use edited and approved content for Azthena
answers, it may on occasions provide incorrect responses.
Please confirm any data provided with the related suppliers or
authors. We do not provide medical advice, if you search for
medical information you must always consult a medical
professional before acting on any information provided.
Your questions, but not your email details will be shared with
OpenAI and retained for 30 days in accordance with their
privacy principles.
Please do not ask questions that use sensitive or confidential
information.
Read the full Terms & Conditions.