Overfitting in AI refers to a situation where a machine learning model performs well on the training data but fails to generalize to new, unseen data. It occurs when the model learns to fit the training data too closely, capturing noise or irrelevant patterns, leading to poor performance on unseen data.
Researchers developed and compared three AI models to estimate energy consumption in residential buildings in desert climates, identifying key factors influencing energy use. The study highlights AI's potential to improve energy efficiency and sustainability in the built environment.
Researchers developed a hybrid model combining artificial neural networks (ANN) and genetic algorithms (GA) to improve the accuracy of predicting laser-induced shock wave velocity, surpassing traditional methods significantly.
Researchers introduced "DeepRFreg," a hybrid model combining deep neural networks and random forests, significantly enhancing particle identification (PID) in high-energy physics experiments. This innovation improves precision and reduces misidentification in particle detection.
A study in Applied Sciences utilized machine learning models to predict pedestrian compliance at crosswalks in Jordan, revealing significant influences of local infrastructure and traffic conditions. Among the models tested, the random forest (RF) model demonstrated the highest accuracy and precision, highlighting ML's potential to improve urban traffic management and pedestrian safety.
Researchers developed the TPE-LightGBM model to precisely identify water hazard sources in coal mines, significantly enhancing safety and management in complex hydrogeological settings.
A study introduces advanced deep learning models integrating DenseNet with multi-task learning and attention mechanisms for superior English accent classification. MPSA-DenseNet, the standout model, achieved remarkable accuracy, outperforming previous methods.
Researchers provide an introductory guide to vision-language models, detailing their functionalities, training methods, and evaluation processes. The study emphasizes the potential and challenges of integrating visual data with language models to advance AI applications.
Researchers evaluated deep learning models for waste classification in smart cities, with ResNeXt-101 emerging as the top performer. The study suggests a federated learning framework to enhance trash detection across diverse environments, leveraging multiple CNN models for improved efficiency in waste management.
Researchers introduced an RS-LSTM-Transformer hybrid model for flood forecasting, combining random search optimization, LSTM networks, and transformer architecture. Tested in the Jingle watershed, this model outperformed traditional methods, offering enhanced accuracy and robustness, particularly for long-term predictions.
Researchers developed and validated machine learning models for predicting turbulent combustion speed in hydrogen-natural gas spark ignition engines, showcasing their superiority over traditional methods. By leveraging data from a MINSEL 380 engine and employing techniques like random forest and artificial neural networks, the study demonstrated high forecasting accuracy, making these models valuable for industrial applications such as engine monitoring and simulation tools.
In their study published in the journal Smart Cities, researchers employed smart sensing and predictive analytics to address challenges in Japan's urban development and infrastructure resilience. Focusing on Setagaya, Tokyo, the research produced predictive models accurately determining critical bearing layer depths, crucial for government plans and construction risk assessments.
Researchers explore the application of AI and ML in volatility forecasting, revealing their promise in improving accuracy and informing financial decisions. The review underscores the need for further exploration in explainable AI, uncertainty quantification, and alternative data sources to advance forecasting capabilities.
Researchers harness convolutional neural networks (CNNs) to recognize Shen embroidery, achieving 98.45% accuracy. By employing transfer learning and enhancing MobileNet V1 with spatial pyramid pooling, they provide crucial technical support for safeguarding this cultural art form.
Researchers introduced WindSeer, a groundbreaking approach utilizing deep neural networks for real-time, high-resolution wind predictions. By addressing the limitations of current weather models and leveraging convolutional neural network architecture, WindSeer offers accurate wind field predictions over diverse terrains without the need for extensive data, promising safer and more efficient operations in aviation and other fields.
Exploring the financial challenges faced by expanding enterprises like the ZH group, researchers present a strategic financial control strategy incorporating intelligent algorithms. Through practical implementation and theoretical analysis, they highlight the efficacy of reverse neural networks and particle swarm optimization in enhancing decision-making and mitigating financial risks.
Researchers introduced a deep convolutional neural network (DCNN) model for accurately detecting and classifying grape leaf diseases. Leveraging a dataset of grape leaf images, the DCNN model outperformed conventional CNN models, demonstrating superior accuracy and reliability in identifying black rot, ESCA, leaf blight, and healthy specimens.
Researchers introduced RST-Net, a novel deep learning model for plant disease prediction, combining residual convolutional networks and Swin transformers. Testing on a benchmark dataset showed superior performance over state-of-the-art models, with potential applications in smart agriculture and precision farming.
This study in Nature explores the application of convolutional neural networks (CNNs) in classifying infrared (IR) images for concealed object detection in security scanning. Leveraging a ResNet-50 model and transfer learning, the researchers refined pre-processing techniques such as k-means and fuzzy-c clustering to improve classification accuracy.
This study explores the transformative impact of deep learning (DL) techniques on computer-assisted interventions and post-operative surgical video analysis, focusing on cataract surgery. By leveraging large-scale datasets and annotations, researchers developed DL-powered methodologies for surgical scene understanding and phase recognition.
Researchers introduced a novel fusion model for predicting lithium-ion battery Remaining Useful Life (RUL), integrating Stacked Denoising Autoencoder (SDAE) and transformer capabilities. This model outperformed others in accuracy and robustness, offering a promising direction for battery life prediction research, crucial for battery management systems and predictive maintenance strategies.
Terms
While we only use edited and approved content for Azthena
answers, it may on occasions provide incorrect responses.
Please confirm any data provided with the related suppliers or
authors. We do not provide medical advice, if you search for
medical information you must always consult a medical
professional before acting on any information provided.
Your questions, but not your email details will be shared with
OpenAI and retained for 30 days in accordance with their
privacy principles.
Please do not ask questions that use sensitive or confidential
information.
Read the full Terms & Conditions.