A neural network is a computational model inspired by the structure and function of the human brain. It consists of interconnected artificial neurons that process and transmit information, enabling machine learning tasks such as pattern recognition, classification, and regression by learning from labeled data.
Korean researchers introduce a groundbreaking framework marrying Explainable AI (XAI) and Zero-Trust Architecture (ZTA) for robust cyberdefense in marine communication networks. Their deep neural network, Zero-Trust Network Intrusion Detection System (NIDS), not only exhibits remarkable accuracy in classifying cyber threats but also integrates XAI methodologies, SHAP and LIME, to provide interpretable insights. This innovative approach fosters transparency and collaboration between AI systems and human experts, promising enhanced cybersecurity in marine, and potentially other, critical infrastructures.
Researchers present YOLO_Bolt, a lightweight variant of YOLOv5 tailored for industrial workpiece identification. With optimizations like ghost bottleneck convolutions and an asymptotic feature pyramid network, YOLO_Bolt outshines YOLOv5, achieving a 2.4% increase in mean average precision (mAP) on the MSCOCO dataset. Specialized for efficient bolt detection in factories, YOLO_Bolt offers improved detection accuracy while reducing model size, paving the way for enhanced quality assurance in industrial settings.
Researchers leverage artificial intelligence and remote sensing data to assess water quality suitability for cage fish farming in reservoirs. The study showcases the effectiveness of AI techniques in predicting water temperature, dissolved oxygen, and total dissolved solids, offering an affordable and efficient solution for monitoring and optimizing cage aquaculture operations in shared water bodies.
Researchers present a groundbreaking integrated agricultural system utilizing IoT-equipped sensors and AI models for precise rainfall prediction and fruit health monitoring. The innovative approach combines CNN, LSTM, and attention mechanisms, demonstrating high accuracy and user-friendly interfaces through web applications, heralding a transformative era in data-driven agriculture.
Researchers present a meta-imager using metasurfaces for optical convolution, offloading computationally intensive operations into high-speed, low-power optics. The system employs angular and polarization multiplexing, achieving both positive and negative valued convolution operations simultaneously, showcasing potential in compact, lightweight, and power-efficient machine vision systems.
In this groundbreaking study, researchers deploy artificial neural networks (ANN) to forecast the presence of macrofungal fruitbodies in Western Hungary. Focusing on Amanita and Russula species, the study reveals the significance of species-specific meteorological parameters in enhancing accuracy, marking a pioneering step in AI-driven predictions for ecological studies.
Researchers introduce a groundbreaking deep learning method, published in Medical Physics, to detect and measure motion artifacts in undersampled brain MRI scans. The approach, utilizing synthetic motion-corrupted data and a convolutional neural network, offers a potential safety measure for AI-based approaches, providing real-time alerts and insights for improved MRI reconstruction methods.
Researchers have unveiled innovative methods, utilizing lidar data and AI techniques, to precisely delineate river channels' bankfull extents. This groundbreaking approach streamlines large-scale topographic analyses, offering efficiency in flood risk mapping, stream rehabilitation, and tracking channel evolution, marking a significant leap in environmental mapping workflows.
Researchers introduce a groundbreaking Optical Tomography method employing Multi-Core Fiber-Optic Cell Rotation (MCF-OCR). This innovative system overcomes limitations in traditional optical tomography by utilizing an AI-driven reconstruction workflow, demonstrating superior accuracy in 3D reconstructions of live cells. The MCF-OCR system offers precise control over cell rotation, while the autonomous reconstruction workflow, powered by computer vision technologies, significantly enhances efficiency and accuracy in capturing detailed cellular morphology.
Researchers address critical forest cover shortage, utilizing Sentinel-2 satellite imagery and sophisticated algorithms. Artificial Neural Networks (ANN) and Random Forest (RF) algorithms showcase exceptional accuracy, achieving 97.75% and 96.98% overall accuracy, respectively, highlighting their potential in precise land cover classification. The study's success recommends integrating hyperspectral satellite imagery for enhanced accuracy and explores the possibilities of deep learning algorithms for further advancements in forest cover assessment.
This work presents a novel Graph Neural Network (GNN) method for swiftly identifying critical road segments post-disaster, aiding efficient recovery and resilience planning. Overcoming computational challenges, the GNN-based edge ranking framework proves effective in large-scale networks, offering accuracy and adaptability. This approach showcases versatility, enabling real-time analysis and facilitating proactive measures for reinforcing critical infrastructure against future disruptions.
Researchers present ML-SEISMIC, a groundbreaking physics-informed neural network (PINN) named ML-SEISMIC, revolutionizing stress field estimation in Australia. The method autonomously integrates sparse stress orientation data with an elastic model, showcasing its potential for comprehensive stress and displacement field predictions, with implications for geological applications, including earthquake modeling, energy production, and environmental assessments.
Researchers focus on improving pedestrian safety within intelligent cities using AI, specifically support vector machine (SVM). Leveraging machine learning and authentic pedestrian behavior data, the SVM model outperforms others in predicting crossing probabilities and speeds, demonstrating its potential for enhancing road traffic safety and integrating with intelligent traffic simulations. The study emphasizes the significance of SVM in accurately predicting real-time pedestrian behaviors, contributing to refined decision models for safer road designs.
This study introduces an AI-based system predicting gait quality progression. Leveraging kinematic data from 734 patients with gait disorders, the researchers explore signal and image-based approaches, achieving promising results with neural networks. The study marks a pioneering application of AI in predicting gait variations, offering insights into future advancements in this critical domain of healthcare.
This study proposes an innovative approach to enhance road safety by introducing a CNN-LSTM model for driver sleepiness detection. Combining facial movement analysis and deep learning, the model outperforms existing methods, achieving over 98% accuracy in real-world scenarios, paving the way for effective implementation in smart vehicles to proactively prevent accidents caused by driver fatigue.
Researchers present an AI platform, Stochastic OnsagerNet (S-OnsagerNet), that autonomously learns clear thermodynamic descriptions of intricate non-equilibrium systems from microscopic trajectory observations. This innovative approach, rooted in the generalized Onsager principle, enables the interpretation of complex phenomena, showcasing its effectiveness in understanding polymer stretching dynamics and demonstrating potential applications in diverse dissipative processes like glassy systems and protein folding.
This paper unveils the Elderly and Visually Impaired Human Activity Monitoring (EV-HAM) system, a pioneering solution utilizing artificial intelligence, digital twins, and Wi-Sense for accurate activity recognition. Employing Deep Hybrid Convolutional Neural Networks on Wi-Fi Channel State Information data, the system achieves a remarkable 99% accuracy in identifying micro-Doppler fingerprints of activities, presenting a revolutionary advancement in elderly and visually impaired care through continuous monitoring and crisis intervention.
Researchers unveil a pioneering approach using a convolutional neural network (CNN) to analyze extreme precipitation patterns' link to climate shifts. This CNN-based method, trained with data from 10,000 precipitation stations, overcomes limitations of traditional analyses, providing high-resolution maps and nuanced insights into the sensitivity of extreme precipitation to climate change for North America, Europe, Australia, and New Zealand.
Researchers advocate for employing artificial neural networks (ANNs) as "artificial physics engines" to compute complex inverse dynamics in human arm and hand movements. The study showcases ANNs' potential in enhancing assistive technologies, such as prosthetics and exoskeletons, offering a detailed, customizable, and reactive approach for more natural movement in individuals with impaired motor function.
Researchers unveil RVTALL, a groundbreaking multimodal dataset for contactless speech recognition. Integrating data from UWB and mmWave radars, depth cameras, lasers, and audio-visual sources, the dataset aids in exploring non-invasive speech analysis. The study demonstrates applications in silent speech recognition, speech enhancement, analysis, and synthesis, though it acknowledges limitations in sample size and diversity. The dataset stands as a robust tool for advancing research in speech-related technologies.
Terms
While we only use edited and approved content for Azthena
answers, it may on occasions provide incorrect responses.
Please confirm any data provided with the related suppliers or
authors. We do not provide medical advice, if you search for
medical information you must always consult a medical
professional before acting on any information provided.
Your questions, but not your email details will be shared with
OpenAI and retained for 30 days in accordance with their
privacy principles.
Please do not ask questions that use sensitive or confidential
information.
Read the full Terms & Conditions.