AI is employed in object detection to identify and locate objects within images or video. It utilizes deep learning techniques, such as convolutional neural networks (CNNs), to analyze visual data, detect objects of interest, and provide bounding box coordinates, enabling applications like autonomous driving, surveillance, and image recognition.
Researchers have introduced an innovative method for identifying broken strands in power lines using unmanned aerial vehicles (UAVs). This two-stage defect detector combines power line segmentation with patch classification, achieving high accuracy and efficiency, making it a promising solution for real-time power line inspections and maintenance.
This paper introduces YOLOv5n-VCW, an advanced algorithm for tomato pest and disease detection, leveraging Efficient Vision Transformer, CARAFE upsampling, and WIoU Loss to enhance accuracy while reducing model complexity. Experimental results demonstrate its superiority over existing models, making it a promising tool for practical applications in agriculture.
This review article delves into the research landscape of automated visual crowd analysis, highlighting its diverse applications in areas like city surveillance, sports event management, and wildlife tracking. It categorizes crowd analysis into six key areas and emphasizes the impact of deep learning in advancing crowd-monitoring systems.
Researchers have introduced PointOcc, an innovative LiDAR-based model that employs a cylindrical tri-perspective view (TPV) representation for efficient 3D semantic occupancy prediction and LiDAR segmentation. PointOcc's novel approach significantly enhances point cloud processing efficiency while preserving intricate 3D scene details, making it a promising solution for autonomous driving applications.
Researchers have successfully employed the MegaDetector open-source object detection model to automate cross-regional wildlife and visitor monitoring using camera traps. This innovation not only accelerates data processing but also ensures accurate and privacy-compliant monitoring of wildlife-human interactions.
Researchers introduce Vehiclectron, a novel approach for precise 3D vehicle dimension estimation using monovision sensors and road geometry. This cost-effective solution utilizes object detection and core vectors to accurately estimate vehicle dimensions, offering potential applications in intelligent transportation systems and traffic flow management.
Researchers introduce VideoCutLER, an innovative unsupervised technique for multi-instance segmentation and tracking in videos. By leveraging synthetic video generation and a novel three-step process, VideoCutLER outperforms optical flow-based methods and achieves remarkable performance in video instance segmentation benchmarks.
Researchers present an innovative approach to train compact neural networks for multitask learning scenarios. By overparameterizing the network during training and sharing parameters effectively, this method enhances optimization and generalization, opening possibilities for embedding intelligent capabilities in various domains like robotics, autonomous systems, and mobile devices.
Researchers explore the innovative concept of Qualitative eXplainable Graphs (QXGs) for spatiotemporal reasoning in automated driving scenes. Learn how QXGs efficiently capture complex relationships, enhance transparency, and contribute to the trustworthy development of autonomous vehicles. This groundbreaking approach revolutionizes automated driving interpretation and sets a new standard for dependable AI systems.
Researchers have introduced a groundbreaking solution, the Class Attention Map-Based Flare Removal Network (CAM-FRN), to tackle the challenge of lens flare artifacts in autonomous driving scenarios. This innovative approach leverages computer vision and artificial intelligence technologies to accurately detect and remove lens flare, significantly improving object detection and semantic segmentation accuracy.
Researchers explore the integration of AI and remote sensing, revolutionizing data analysis in Earth sciences. By exploring AI techniques such as deep learning, self-attention methods, and real-time object detection, the study unveils a wide range of applications from land cover mapping to economic activity monitoring. The paper showcases how AI-driven remote sensing holds the potential to reshape our understanding of Earth's processes and address pressing environmental challenges.
Researchers present LightSpaN, a streamlined Convolutional Neural Network (CNN)-based solution for swift and accurate vehicle identification in intelligent traffic monitoring systems powered by the Internet of Things (IoT). This innovative approach outperforms existing methods with an average accuracy of 99.9% for emergency vehicles, contributing to reduced waiting and travel times.
Researchers introduce a revolutionary method combining Low-Level Feature Attention, Feature Fusion Neck, and Context-Spatial Decoupling Head to enhance object detection in dim environments. With improvements in accuracy and real-world performance, this approach holds promise for applications like nighttime surveillance and autonomous driving.
Researchers delve into the realm of Citizen-Centric Digital Twins (CCDT), exploring cutting-edge technologies that enable predictive, simulative, and visualizing capabilities to address city-level issues through citizen engagement. The study highlights data acquisition methods, machine learning algorithms, and APIs, offering insights into enhancing urban management while fostering public participation.
Researchers present a novel approach utilizing a residual network (ResNet-18) combined with AI to classify cooling system faults in hydraulic test rigs with 95% accuracy. As hydraulic systems gain prominence in various industries, this innovative method offers a robust solution for preventing costly breakdowns, paving the way for improved reliability and efficiency.
The study delves into the integration of deep learning, discusses the dataset, and showcases the potential of AI-driven fault detection in enhancing sustainable operations within hydraulic systems.
Researchers propose a game-changing approach, ELIXR, that combines large language models (LLMs) with vision encoders for medical AI in X-ray analysis. The method exhibits exceptional performance in various tasks, showcasing its potential to revolutionize medical imaging applications and enable high-performance, data-efficient classification, semantic search, VQA, and radiology report quality assurance.
CAGSA-YOLO, a deep learning algorithm, enhances fire safety by improving fire detection and prevention systems, achieving an mAP of 85.1% and aiding firefighters in rapid response and prevention. The algorithm integrates CARAFE upsampling, Ghost lightweight design, and SA mechanism to identify indoor fire equipment and ensure urban safety efficiently.
Researchers propose an intelligent Digital Twin framework enhanced with deep learning to detect and classify human operators and robots in human-robot collaborative manufacturing. The framework improves reliability and safety by enabling autonomous decision-making and maintaining a safe distance between humans and robots, offering a promising solution for advanced manufacturing systems.
Researchers propose a novel Transformer model with CoAttention gated vision language (CAT-ViL) embedding for surgical visual question localized answering (VQLA) tasks. The model effectively fuses multimodal features and provides localized answers, demonstrating its potential for real-world applications in surgical training and understanding.
A groundbreaking study presents a framework that leverages computer vision and artificial intelligence to automate the inspection process in the food industry, specifically for grading and sorting carrots. By incorporating RGB and depth information from a depth sensor, the system accurately identifies the geometric properties of carrots in real-time, revolutionizing traditional grading methods.
Terms
While we only use edited and approved content for Azthena
answers, it may on occasions provide incorrect responses.
Please confirm any data provided with the related suppliers or
authors. We do not provide medical advice, if you search for
medical information you must always consult a medical
professional before acting on any information provided.
Your questions, but not your email details will be shared with
OpenAI and retained for 30 days in accordance with their
privacy principles.
Please do not ask questions that use sensitive or confidential
information.
Read the full Terms & Conditions.