AI is employed in image processing to enhance and manipulate images through various techniques like denoising, super-resolution, and image restoration. Deep learning models and algorithms enable improved image quality, object recognition, and advanced image editing capabilities for a wide range of applications including photography, medical imaging, and computer vision.
This paper explores how the fusion of big data and artificial intelligence (AI) is reshaping product design in response to heightened consumer preferences for customized experiences. The study highlights how these innovative methods are breaking traditional design constraints, providing insights into user preferences, and fostering automation and intelligence in the design process, ultimately driving more competitive and intelligent product innovations.
Researchers have introduced a novel Two-Stage Induced Deep Learning (TSIDL) approach to accurately and efficiently classify similar drugs with diverse packaging. By leveraging pharmacist expertise and innovative CNN models, the method achieved exceptional classification accuracy and holds promise for preventing medication errors and safeguarding patient well-being in real-time dispensing systems.
Researchers present a novel approach utilizing a residual network (ResNet-18) combined with AI to classify cooling system faults in hydraulic test rigs with 95% accuracy. As hydraulic systems gain prominence in various industries, this innovative method offers a robust solution for preventing costly breakdowns, paving the way for improved reliability and efficiency.
The study delves into the integration of deep learning, discusses the dataset, and showcases the potential of AI-driven fault detection in enhancing sustainable operations within hydraulic systems.
The article introduces SliDL, a powerful Python library designed to simplify and streamline the analysis of high-resolution whole-slide images (WSIs) in digital pathology. With deep learning at its core, SliDL addresses challenges in managing image annotations, handling artifacts, and evaluating model performance. From automatic tissue detection to comprehensive model evaluation, SliDL bridges the gap between conventional image analysis and the intricate world of WSI analysis.
Researchers delve into the realm of intelligent packaging powered by AI to ensure food freshness, offering insights into global advancements. The study highlights the potential of AI-driven solutions for monitoring freshness, though challenges in sensor technology and algorithm optimization remain.
This study explores the practical applications of machine learning in luminescent biosensors and nanostructure synthesis. Machine learning techniques are shown to optimize nanomaterial synthesis, improve luminescence sensing accuracy, and enhance sensor arrays for various analyte detection, revolutionizing analytical chemistry and biosensing applications.
A groundbreaking study presents a framework that leverages computer vision and artificial intelligence to automate the inspection process in the food industry, specifically for grading and sorting carrots. By incorporating RGB and depth information from a depth sensor, the system accurately identifies the geometric properties of carrots in real-time, revolutionizing traditional grading methods.
Researchers propose DLIPHE, a novel algorithm that combines deep learning and image processing, to estimate building heights using static Google Street View images. The algorithm employs semantic segmentation and advanced techniques to identify buildings and extract their contours, enabling real-time and automatic height estimation for aerial devices. The study demonstrates promising results, highlighting the potential for DLIPHE to enhance communication paths for unmanned aerial vehicles (UAVs) and electric vertical take-off and landing aircraft (eVTOLs) in future urban networks.
Demystifying AI: A comprehensive overview of eXplainable AI (XAI) provides a thorough analysis of current trends, research, and concerns in the field, shedding light on the inner workings of AI models for trustworthy decision-making. The review covers various aspects of XAI, including data explainability, model explainability, post-hoc explainability, assessment of explanations, and available XAI research software tools. It highlights the importance of understanding and validating AI systems to ensure transparency, fairness, and accountability in their deployment
The study explores the potential of using visual ChatGPT, a visual language model, in remote sensing tasks. It highlights the model's capabilities in image analysis and manipulation, including scene classification, edge detection, and image segmentation.
Terms
While we only use edited and approved content for Azthena
answers, it may on occasions provide incorrect responses.
Please confirm any data provided with the related suppliers or
authors. We do not provide medical advice, if you search for
medical information you must always consult a medical
professional before acting on any information provided.
Your questions, but not your email details will be shared with
OpenAI and retained for 30 days in accordance with their
privacy principles.
Please do not ask questions that use sensitive or confidential
information.
Read the full Terms & Conditions.