AI is used in manufacturing to optimize production processes, improve quality control, and enhance automation. It employs machine learning algorithms, robotics, and real-time data analysis to increase efficiency, reduce defects, and enable predictive maintenance, leading to improved productivity and cost savings in manufacturing operations.
Scientists develop a reprogrammable light-based processor to advance quantum computing, promising faster computations, secure communications, and environmental and healthcare monitoring enhancements.
This article presents a novel method for quantifying low-carbon policies in China's manufacturing industries, addressing previous deficiencies in direct measurement. By constructing a comprehensive low-carbon policy intensity index and utilizing innovative natural language processing techniques, researchers provided valuable insights into policy quantification and its impact. The resulting dataset, comprising 7282 policies, offers multidisciplinary researchers a robust foundation for analyzing the effectiveness of low-carbon policies in China's manufacturing sector.
This paper introduces a novel fault detection system for wiring harness manufacturing, leveraging an AI classification model and regional selective data scaling (RSDS) to overcome challenges such as limited labeled data and material variability. By integrating AI with RSDS and employing advanced data augmentation techniques, the system demonstrates exceptional accuracy and offers promising improvements over traditional fault detection methods. Although further research is needed to refine scalability and compatibility, this approach shows significant potential for enhancing manufacturing quality control practices.
Analyzing 9,182 documents from 1989 to 2022, this study unveils the burgeoning role of Artificial Intelligence of Things (AIoT) in realizing Sustainable Development Goals (SDGs). With a focus on interdisciplinary collaboration, global trends, and thematic evolution, it emphasizes the dynamic synergy between AI, IoT, and sustainability, guiding future endeavors in leveraging technology for global well-being.
Researchers present a groundbreaking study on denim fabric evolution, introducing a novel blend with cotton fibers and bicomponent polyester filaments (PET/PTT). Employing an ant colony algorithm for dye formulation, the study not only showcases superior mechanical and thermal properties of the blend but also demonstrates the algorithm's efficiency in predicting optimal dyeing recipes, revolutionizing denim manufacturing for enhanced sustainability and color uniformity.
Contrary to common concerns, a study published in Nature unveils that the introduction of artificial intelligence, particularly industrial robots, has positively impacted employment in China's manufacturing sector from 2006 to 2020. The research challenges pessimistic views, highlighting increased job creation, enhanced labor productivity, and refined division of labor, with a significant positive effect on female employment, offering valuable insights for global AI employment dynamics.
This research pioneers the use of acoustic emission and artificial neural networks (ANN) to detect partial discharge (PD) in ceramic insulators, crucial for electrical system reliability. With a focus on defects caused by environmental factors, the study achieved a 96.03% recognition rate using ANNs, further validated by support vector machine (SVM) and K-nearest neighbor (KNN) algorithms, showcasing a significant advancement in real-time monitoring for electrical power network safety.
Researchers presented a groundbreaking method for predicting industrial product manufacturing quality. Leveraging Synthetic Minority Oversampling Technique (SMOTE), Extreme Gradient Boosting (XGBoost), and edge computing, the active control approach tackles imbalanced data challenges in quality prediction, introducing a novel framework for flexible industrial data handling. The study's application in brake disc production showcased superior performance, with the proposed SMOTE-XGboost_t method outperforming other classifiers, demonstrating its effectiveness in real-world industrial environments.
Researchers from the University of Birmingham unveil a novel 3D edge detection technique using unsupervised learning and clustering. This method, offering automatic parameter selection, competitive performance, and robustness, proves invaluable across diverse applications, including robotics, augmented reality, medical imaging, automotive safety, architecture, and manufacturing, marking a significant leap in computer vision capabilities.
Researchers present YOLO_Bolt, a lightweight variant of YOLOv5 tailored for industrial workpiece identification. With optimizations like ghost bottleneck convolutions and an asymptotic feature pyramid network, YOLO_Bolt outshines YOLOv5, achieving a 2.4% increase in mean average precision (mAP) on the MSCOCO dataset. Specialized for efficient bolt detection in factories, YOLO_Bolt offers improved detection accuracy while reducing model size, paving the way for enhanced quality assurance in industrial settings.
Researchers leverage synchrotron X-ray imaging and machine learning models, including deep convolutional neural networks (ConvNets) and semantic segmentation, to predict laser absorptance and segment vapor depressions in metal additive manufacturing. The end-to-end and modular approaches showcase efficient and interpretable solutions, offering potential for real-time monitoring and decision-making in industrial processes.
Researchers pioneer a versatile technique, integrating droplet-based microfluidics and simulation-guided design, for mass-producing soft microrobots with programmable magnetic and structural anisotropy. This breakthrough enables precise control over collective behaviors, offering potential applications in biomedical functions such as drug delivery and biosensing within complex physiological environments.
The article emphasizes the pivotal role of Human Factors and Ergonomics (HFE) in addressing challenges and debates surrounding trust in automation, ethical considerations, user interface design, human-AI collaboration, and the psychological and behavioral aspects of human-robot interaction. Understanding knowledge gaps and ongoing debates is crucial for shaping the future development of HFE in the context of emerging technologies.
This paper delves into the critical role of industrial robots equipped with gripping systems in modern manufacturing. The article emphasizes the need for automated customization of gripping solutions for efficiency and productivity. The proposed modular architecture, comprehensive classification, and machine-readable encoding paradigm offer a pathway for swift, contextually fitting grippers, ensuring flexible and dexterous robotic handling in Industry 4.0.
This study explores the synergies between artificial intelligence (AI) and electronic skin (e-skin) systems, envisioning a transformative impact on robotics and medicine. E-skins, equipped with diverse sensors, offer a wealth of health data, and the integration of advanced machine learning techniques promises to revolutionize data analysis, optimize hardware, and propel applications from prosthetics to personalized health diagnostics.
Researchers proposed a hybrid optimization approach, combining Artificial Neural Network (ANN) and Genetic Algorithm (GA), to enhance plastic injection molding. Addressing quality, production efficiency, and sustainability, the method demonstrated effectiveness in achieving global multi-objective optimization, providing a valuable tool for smart, sustainable, and economically efficient production processes.
This article critically reviews the challenges and advancements in intelligent vehicle safety within complex multi-vehicle interactions. Addressing data collection methods, vehicle interaction dynamics, and risk evaluation techniques, the study categorizes risk assessment into state inference-based and trajectory prediction-based methods. It underscores the need for deeper analysis of multi-vehicle behaviors and emphasizes the advantages and limitations of existing risk assessment approaches.
This scientific report explores the potential of mega-castings to replace steel sheets in automotive structures, offering cost efficiency and design flexibility. Researchers propose a novel two-phase optimization pipeline combining topology optimization, response-surface-based techniques, and machine learning to balance crash demands, castability, and structural goals. The approach outperforms traditional workflows, generating weight-optimized designs within shorter timeframes.
This article delves into the unequal impacts of automation on urban and non-urban labor markets. Analyzing Italian data, it reveals that automation universally displaces workers, challenging assumptions about urban immunity. The study emphasizes the need for ongoing research to understand the evolving landscape of automation, its impact on workforce composition, and the potential for exacerbating inequalities between privileged urban occupations and excluded low-skill workers.
Researchers emphasize the growing significance of radar-based human activity recognition (HAR) in safety and surveillance, highlighting its advantages over vision-based sensing in challenging conditions. The study reviews classical Machine Learning (ML) and Deep Learning (DL) approaches, with DL's advantage in avoiding manual feature extraction and ML's robust empirical basis. A comparative study on benchmark datasets evaluates performance and computational efficiency, aiming to establish a standardized assessment framework for radar-based HAR techniques.
Terms
While we only use edited and approved content for Azthena
answers, it may on occasions provide incorrect responses.
Please confirm any data provided with the related suppliers or
authors. We do not provide medical advice, if you search for
medical information you must always consult a medical
professional before acting on any information provided.
Your questions, but not your email details will be shared with
OpenAI and retained for 30 days in accordance with their
privacy principles.
Please do not ask questions that use sensitive or confidential
information.
Read the full Terms & Conditions.