Artificial Intelligence (AI) refers to the simulation of human intelligence processes by machines, especially computer systems. These processes include learning (the acquisition of information and rules for using the information), reasoning (using rules to reach approximate or definite conclusions), and self-correction.
The article presents a groundbreaking approach for identifying sandflies, crucial vectors for various pathogens, using Wing Interferential Patterns (WIPs) and deep learning. Traditional methods are laborious, and this non-invasive technique offers efficient sandfly taxonomy, especially under field conditions. The study demonstrates exceptional accuracy in taxonomic classification at various levels, showcasing the potential of WIPs and deep learning for advancing entomological surveys in medical vector identification.
This paper delves into the transformative impact of machine learning (ML) in scientific research while highlighting critical challenges, particularly in COVID-19 diagnostics using AI-driven algorithms. The study underscores concerns about misleading claims, flawed methodologies, and the need for standardized guidelines to ensure credibility and reproducibility. It addresses issues such as data leakage, inadequate reporting, and overstatement of findings, emphasizing the importance of proper training and standardized methodologies in the rapidly evolving field of health-related ML.
This article introduces an AI-based solution for real-time detection of safety helmets and face masks on municipal construction sites. The enhanced YOLOv5s model, leveraging ShuffleNetv2 and ECA mechanisms, demonstrates a 4.3% increase in mean Average Precision with significant resource savings. The study emphasizes the potential of AI-powered systems to improve worker safety, reduce accidents, and enhance efficiency in urban construction projects.
This research explores Unique Feature Memorization (UFM) in deep neural networks (DNNs) trained for image classification tasks, where networks memorize specific features occurring only once in a single sample. The study introduces methods, including the M score, to measure and identify UFM, highlighting its privacy implications and potential risks for model robustness. The findings emphasize the need for mitigation strategies to address UFM and enhance the privacy and generalization of DNNs, especially in fields like medical imaging and computer vision.
This research, published in PLOS One, investigates the protective feature preferences of the adult Danish population in various AI decision-making scenarios. With a focus on both public and commercial sectors, the study explores the nuanced interplay of demographic factors, societal expectations, and trust in shaping preferences for features such as AI knowledge, human responsibility, non-discrimination, human explainability, and system performance.
This article proposes the Governability, Reliability, Equity, Accountability, Traceability, Privacy, Lawfulness, Empathy, and Autonomy (GREAT PLEA) ethical principles for generative AI applications in healthcare. Drawing inspiration from existing military and healthcare ethical principles, the GREAT PLEA framework aims to address ethical concerns, protect clinicians and patients, and guide the responsible development and implementation of generative AI in healthcare settings.
A groundbreaking study introduces the IGP-UHM AI v1.0 model, utilizing deep learning and XAI to enhance El Niño-Southern Oscillation (ENSO) prediction. The 2023–2024 forecast reveals sustained yet weakening EN conditions, emphasizing the model's credibility through Layerwise Relevance Propagation (LRP) explanations. The research underscores the need for ongoing refinement, human oversight, and raises crucial questions about ENSO predictability limits in the context of climate change.
Researchers propose Med-MLLM, a Medical Multimodal Large Language Model, as an AI decision-support tool for rare diseases and new pandemics, requiring minimal labeled data. The framework integrates contrastive learning for image-text pre-training and demonstrates superior performance in COVID-19 reporting, diagnosis, and prognosis tasks, even with only 1% labeled training data.
Employing AI and ML, this study analyzed elite junior female tennis players' game statistics to predict tournament outcomes and understand career trajectories. While accurately forecasting junior tournament results, predicting future careers faced challenges, emphasizing the role of non-game factors and junior tournament participation in shaping successful careers. The study recommends refining models, emphasizing serve improvement, and supporting young talents through international tournaments for a nuanced understanding of tennis dynamics and enhanced training programs.
This research delves into the synergy of Artificial Intelligence (AI) and Internet of Things (IoT) security. The study evaluates and compares various AI algorithms, including machine learning (ML) and deep learning (DL), for classifying and detecting IoT attacks. It introduces a novel taxonomy of AI methodologies for IoT security and identifies LSTM as the top-performing algorithm, emphasizing its potential applications in diverse fields.
Researchers introduce the A-Lab, an autonomous laboratory integrating AI, robotics, and historical data to synthesize 41 new compounds from 58 targets over 17 days. With a 71% success rate, the study underscores the impact of active learning, computational insights, and refined synthesis strategies in advancing materials discovery. The A-Lab's innovative approach advocates for the fusion of technology and experimental endeavors, marking a significant step towards autonomous materials research and development.
Researchers present a novel microclimate model for precision agriculture in Bergamo, Italy, blending neural networks and physical modeling. Assessing the impact of global (ERA5) versus local (ARPA) climate data, the model achieved high accuracy in temperature predictions, emphasizing the role of neural networks in capturing intricate variations. The study contributes valuable insights for optimizing input data in microclimate modeling, vital for informed decision-making in precision agriculture.
Researchers, leveraging DeepMind's GNoME, showcase AI's potential in accelerating the discovery of functional materials. The synergy of advanced graph networks and autonomous lab robots, exemplified at Lawrence Berkeley National Lab, yields 381,000 viable materials for energy solutions. The paradigm shift combines AI's scalability with adaptive experimentation, promising groundbreaking advances in materials science, energy, and sustainability.
Researchers unveil a pioneering method for accurately estimating food weight using advanced boosting regression algorithms trained on a vast Mediterranean cuisine image dataset. Achieving remarkable accuracy with a mean weight absolute error of 3.93 g, this innovative approach addresses challenges in dietary monitoring and offers a promising solution for diverse food types and shapes.
A groundbreaking study from Kyoto Prefectural University of Medicine introduces an advanced AI system leveraging deep neural networks and CT scans to objectively and accurately determine the biological sex of deceased individuals based on skull morphology. Outperforming human experts, this innovative approach promises to enhance forensic identification accuracy, addressing challenges in reliability and objectivity within traditional methods.
This paper demonstrates the efficacy of advanced machine learning techniques in accurately estimating crucial water distribution uniformity metrics for efficient sprinkler system analysis, design, and evaluation. The study explores the intersection of hydraulic parameters, meteorological influences, and machine learning models to optimize sprinkler uniformity, providing valuable insights for precision irrigation management.
Researchers propose leveraging a Quality Management System (QMS) tailored to healthcare AI as a systematic solution to bridge the translation gap from research to clinical application. The QMS, aligned with ISO 13485 and risk-based approaches, addresses key components enabling healthcare organizations to navigate regulatory complexities, minimize redundancy, and optimize the ethical deployment of AI in patient care.
Researchers present a meticulously curated dataset of human-machine interactions, gathered through a specialized application with formally defined User Interfaces (UIs). This dataset aims to decode user behavior and advance adaptive Human-Machine Interfaces (HMIs), providing a valuable resource for professionals and data analysts engaged in HMI research and development.
This pioneering study investigated the accuracy of smartphone-based estimation of body composition in youth soccer players, utilizing a novel app (Mobile Fit) for digital anthropometric assessments. Researchers evaluated its validity against dual-energy X-ray absorptiometry (DXA) and developed population-specific equations for appendicular lean mass and body fat percentage estimation.
The paper provides a comprehensive review of artificial intelligence (AI)-assisted wireless localization technologies addressing limitations in existing systems. It discusses AI algorithms to counteract signal quality deterioration, spatiotemporal asynchronization, non-line-of-sight (NLoS) event identification, and miscellaneous methods for performance enhancement.
Terms
While we only use edited and approved content for Azthena
answers, it may on occasions provide incorrect responses.
Please confirm any data provided with the related suppliers or
authors. We do not provide medical advice, if you search for
medical information you must always consult a medical
professional before acting on any information provided.
Your questions, but not your email details will be shared with
OpenAI and retained for 30 days in accordance with their
privacy principles.
Please do not ask questions that use sensitive or confidential
information.
Read the full Terms & Conditions.