Deep Learning is a subset of machine learning that uses artificial neural networks with multiple layers (hence "deep") to model and understand complex patterns in datasets. It's particularly effective for tasks like image and speech recognition, natural language processing, and translation, and it's the technology behind many advanced AI systems.
Researchers present LightSpaN, a streamlined Convolutional Neural Network (CNN)-based solution for swift and accurate vehicle identification in intelligent traffic monitoring systems powered by the Internet of Things (IoT). This innovative approach outperforms existing methods with an average accuracy of 99.9% for emergency vehicles, contributing to reduced waiting and travel times.
Researchers present the innovative Cost-sensitive K-Nearest Neighbor using Hyperspectral Imaging (CSKNN) method for accurately identifying diverse wheat seed varieties. By addressing challenges such as noise and limited spatial utilization, CSKNN harnesses the power of hyperspectral imaging, noise reduction, feature extraction, and cost sensitivity, outperforming traditional and deep learning methods.
This paper explores how the fusion of big data and artificial intelligence (AI) is reshaping product design in response to heightened consumer preferences for customized experiences. The study highlights how these innovative methods are breaking traditional design constraints, providing insights into user preferences, and fostering automation and intelligence in the design process, ultimately driving more competitive and intelligent product innovations.
Researchers have introduced a novel Two-Stage Induced Deep Learning (TSIDL) approach to accurately and efficiently classify similar drugs with diverse packaging. By leveraging pharmacist expertise and innovative CNN models, the method achieved exceptional classification accuracy and holds promise for preventing medication errors and safeguarding patient well-being in real-time dispensing systems.
Researchers highlight the role of solid biofuels and IoT technologies in smart city development. They introduce an IoT-based method, Solid Biofuel Classification using Sailfish Optimizer Hybrid Deep Learning (SBFC-SFOHDL), which leverages deep learning and optimization techniques for accurate biofuel classification.
Researchers explore the power of machine learning models to predict effective microbial strains for combatting drought's impact on crop production. By comparing various models, the study reveals that gradient boosted trees (GBTs) offer high accuracy, though considerations of computational resources and application needs are vital when choosing a model for real-world implementation.
Researchers introduce a revolutionary method combining Low-Level Feature Attention, Feature Fusion Neck, and Context-Spatial Decoupling Head to enhance object detection in dim environments. With improvements in accuracy and real-world performance, this approach holds promise for applications like nighttime surveillance and autonomous driving.
Researchers introduce the Graph Patch Informer (GPI) as a novel approach for accurate renewable energy forecasting (REF). Combining self-attention, graph attention networks (GATs), and self-supervised pre-training, GPI outperforms existing models and addresses challenges in long-term modeling, missing data, and spatial correlations. The model's effectiveness is demonstrated across various REF tasks, offering a promising solution for stable power systems and advancing renewable energy integration.
The article highlights a recent study that showcases the transformative potential of combining artificial intelligence (AI) and remote sensing data sources for automated large-scale mapping of urban street trees. By leveraging geographic imagery and deep learning algorithms, the study demonstrates an efficient and scalable approach to overcome the challenges of conventional field-based surveys.
Researchers delve into the transformative potential of large AI models in the context of 6G networks. These wireless big AI models (wBAIMs) hold the key to revolutionizing intelligent services by enabling efficient and flexible deployment. The study explores the demand, design, and deployment of wBAIMs, outlining their significance in creating sustainable and versatile wireless intelligence for 6G networks.
Researchers examine the multifaceted applications of artificial intelligence (AI) and machine learning (ML) in revolutionizing construction processes and fostering sustainable communities. Covering the entire architecture, engineering, construction, and operations (AECO) domain, the study categorizes and explores existing and emerging roles of AI and ML in indoor and outdoor sustainability enhancements, construction lifecycles, and innovative integration with blockchain, digital twins, and robotics.
Researchers present a novel approach utilizing a residual network (ResNet-18) combined with AI to classify cooling system faults in hydraulic test rigs with 95% accuracy. As hydraulic systems gain prominence in various industries, this innovative method offers a robust solution for preventing costly breakdowns, paving the way for improved reliability and efficiency.
The study delves into the integration of deep learning, discusses the dataset, and showcases the potential of AI-driven fault detection in enhancing sustainable operations within hydraulic systems.
Researchers introduce the Gap Layer modified Convolution Neural Network (GL-CNN) coupled with IoT and Unmanned Aerial Vehicles (UAVs) for accurate and efficient monitoring of palm tree seedling growth. This approach utilizes advanced image analysis techniques to predict seedling health, addressing challenges in early-stage plant monitoring and restoration efforts. The GL-CNN architecture achieves impressive accuracy, highlighting its potential for transforming ecological monitoring in smart farming.
This article delves into the transformational potential of automated driving (AD) systems on transportation, focusing on the integration of prediction and planning. While traditionally treated as separate tasks, recent insights advocate for an integrated approach to anticipate responses of other traffic participants. The review extensively covers cutting-edge deep learning models for prediction, planning, and their integration, highlighting strengths, limitations, and implications.
Researchers delve into AI's role in carbon reduction in buildings, discussing energy prediction, ML-driven emission mitigation, and carbon accounting. The paper underscores urgent emission reduction in construction, highlighting ML's potential to drive sustainable practices, with a focus on AI's positive impact on the low-carbon building sector.
Researchers explored the effectiveness of transformer models like BERT, ALBERT, and RoBERTa for detecting fake news in Indonesian language datasets. These models demonstrated accuracy and efficiency in addressing the challenge of identifying false information, highlighting their potential for future improvements and their importance in combating the spread of fake news.
The paper delves into recent advancements in facial emotion recognition (FER) through neural networks, highlighting the prominence of convolutional neural networks (CNNs), and addressing challenges like authenticity and diversity in datasets, with a focus on integrating emotional intelligence into AI systems for improved human interaction.
The article introduces SliDL, a powerful Python library designed to simplify and streamline the analysis of high-resolution whole-slide images (WSIs) in digital pathology. With deep learning at its core, SliDL addresses challenges in managing image annotations, handling artifacts, and evaluating model performance. From automatic tissue detection to comprehensive model evaluation, SliDL bridges the gap between conventional image analysis and the intricate world of WSI analysis.
Researchers present the Light and Accurate Face Detection (LAFD) algorithm, an optimized version of the Retinaface model for precise and lightweight face detection. By incorporating modifications to the MobileNetV3 backbone, an SE attention mechanism, and a Deformable Convolution Network (DCN), LAFD achieves significant accuracy improvements over Retinaface. The algorithm's innovations offer a more efficient and accurate solution for face detection tasks, making it well-suited for various applications.
Researchers present an innovative framework that integrates voice and gesture commands through multimodal fusion, enabling effective and secure communication between humans and robots. This architecture, combined with a safety layer, ensures both natural interaction and compliance with safety measures, showcasing its potential through a comparative experiment in pick-and-place tasks.
Terms
While we only use edited and approved content for Azthena
answers, it may on occasions provide incorrect responses.
Please confirm any data provided with the related suppliers or
authors. We do not provide medical advice, if you search for
medical information you must always consult a medical
professional before acting on any information provided.
Your questions, but not your email details will be shared with
OpenAI and retained for 30 days in accordance with their
privacy principles.
Please do not ask questions that use sensitive or confidential
information.
Read the full Terms & Conditions.