Impact of AI Advice and Explainability in Personnel Selection

In a paper published in the journal Scientific Reports, researchers examined human interaction with artificial intelligence (AI) generated advice in personnel selection through five experiments involving 1403 participants. They presented both accurate and incorrect advice and manipulated factors such as the source of advice and its explainability. 

Percentage overview of the different combinations of type of advice and participant decisions for Experiment 1a and 1b. Correct followed = Presentation of correct advice and participants’ decision was correct, Incorrect followed = Presentation of incorrect advice and participants’ decision was incorrect, Correct overruled = Presentation of correct advice but participants’ decision was incorrect, Incorrect overruled = Presentation of incorrect advice but participants’ decision was correct. Image Credit: https://www.nature.com/articles/s41598-024-60220-5
Percentage overview of the different combinations of type of advice and participant decisions for Experiment 1a and 1b. Correct followed = Presentation of correct advice and participants’ decision was correct, Incorrect followed = Presentation of incorrect advice and participants’ decision was incorrect, Correct overruled = Presentation of correct advice but participants’ decision was incorrect, Incorrect overruled = Presentation of incorrect advice but participants’ decision was correct. Image Credit: https://www.nature.com/articles/s41598-024-60220-5

Despite expecting accurate and explainable advice to enhance decision-making, findings revealed that incorrect advice consistently led to performance decrements, indicating overreliance. Interestingly, both the source of advice and its explainability significantly affected participants' reliance on inaccurate guidance. This highlights the intricate nature of human-AI interaction and underscores the need for regulatory standards in human resource management (HRM).

Background

Prior studies note the increasing use of AI in HRM, particularly in resume screening for personnel selection. However, the impact of AI-generated advice on decision-making and the efficacy of explainability measures still need to be determined. Previous research indicates that people heavily rely on advice, influenced by factors such as its source and accuracy. While there is a preference for human advice, AI advice can also be appreciated in certain contexts. The accuracy and explainability of advice are crucial, yet findings on the effectiveness of explanations vary.

Experiment Execution Guide

The study, preregistered and approved by the research ethics committee of the University of Regensburg, involved five online experiments focusing on personnel selection. Participants, recruited via university mailing lists and professional networking platforms, assumed the role of recruiters tasked with identifying suitable candidates for a position. Resumes designed specifically for the study were presented, with either human or AI sources or no advice influencing participants' decisions.

Additionally, the explainability of AI advice varied across experiments, employing methods such as heatmaps or charts. Participants rated the suitability of each candidate, the quality of advice, and their confidence in decision-making.

Dependent variables included performance, advice quality rating, and confidence rating. The team assessed performance by evaluating the correctness of decisions, measured advice quality by participants' perceived usefulness and trust, and participants self-reported their confidence in decision-making. 

Statistical analyses involved one-way analysis of variance (ANOVAs), mixed-effects regressions, and logistic/linear regressions to compare performance and analyze advice quality and confidence ratings. Covariates such as attitude towards AI and professional experience were controlled for in the experiments, which were conducted in German, with materials and data publicly accessible for further review.

Experiment 1 Findings

In Experiment 1a, involving university students, participants were tasked with personnel selection decisions under varying advice conditions. The study employed a mixed-factors design, examining the impact of advice accuracy (correct vs. incorrect) and source (human vs. AI) on decision-making performance. Results indicated that participants' performance improved when provided with proper advice, regardless of source.

However, reliance on incorrect advice was evident, leading to lower performance rates and indicating overreliance on inaccurate guidance. While human advice elicited slightly better performance and higher confidence ratings, controlling for covariates diminished the effect. Interestingly, participants often failed to discern the quality of incorrect advice, rating it similarly to correct advice and maintaining higher confidence even when it was wrong.

Experiment 1b replicated these findings with HRM employees, demonstrating consistent results across participant groups with varying levels of expertise. Accuracy of advice significantly influenced decision-making performance, advice quality ratings, and confidence levels, corroborating the importance of accurate guidance.

Notably, HRM professionals exhibited similar patterns of following correct and incorrect advice, suggesting reduced discrimination between advice sources compared to less experienced participants. These findings underscore the critical role of advice accuracy in personnel selection tasks and highlight the need for cautious reliance on AI-generated guidance, irrespective of the source.

AI Advice Explainability

In a series of experiments (2a, 2b, and 2c), the focus shifted towards exploring the impact of explainability on the efficacy of AI advice in personnel selection tasks. Experiment 2a, involving full-time and part-time students, investigated the effectiveness of visual explanations, specifically saliency heat maps, in aiding participants in identifying incorrect AI advice. Despite participants' better performance when provided with explainable advice, there was no significant difference in their decision-making compared to receiving no advice.

Experiment 2b replicated these findings with unlimited review time, indicating that even with more time, the complexity of visualized explanations did not aid participants in recognizing incorrect advice. Experiment 2c introduced a simplified visualization method using bar graphs to represent the degree of suitability for each criterion, yet it also failed to impact decision-making significantly.

Surprisingly, participants expressed higher confidence in their decisions when provided with explanations for incorrect advice, suggesting a nuanced relationship between explainability and decision confidence. Overall, while the quality of correct advice was perceived as higher with explainable AI advice, none of the experiments demonstrated a substantial improvement in decision-making with explainable advice, challenging the notion that visualized explanations effectively prevent overreliance on incorrect AI guidance.

Conclusion

To sum up, this study underscored the critical role of algorithm accuracy in AI-enabled decision support systems for personnel selection. Despite efforts to enhance explainability, participants continued to rely heavily on inaccurate advice. It highlighted the complexity of human-AI interaction and underscored the necessity for robust regulations and quality standards. Future research should explore alternative approaches to presenting AI advice to mitigate blind reliance.

Journal reference:
Silpaja Chandrasekar

Written by

Silpaja Chandrasekar

Dr. Silpaja Chandrasekar has a Ph.D. in Computer Science from Anna University, Chennai. Her research expertise lies in analyzing traffic parameters under challenging environmental conditions. Additionally, she has gained valuable exposure to diverse research areas, such as detection, tracking, classification, medical image analysis, cancer cell detection, chemistry, and Hamiltonian walks.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Chandrasekar, Silpaja. (2024, May 09). Impact of AI Advice and Explainability in Personnel Selection. AZoAi. Retrieved on November 21, 2024 from https://www.azoai.com/news/20240509/Impact-of-AI-Advice-and-Explainability-in-Personnel-Selection.aspx.

  • MLA

    Chandrasekar, Silpaja. "Impact of AI Advice and Explainability in Personnel Selection". AZoAi. 21 November 2024. <https://www.azoai.com/news/20240509/Impact-of-AI-Advice-and-Explainability-in-Personnel-Selection.aspx>.

  • Chicago

    Chandrasekar, Silpaja. "Impact of AI Advice and Explainability in Personnel Selection". AZoAi. https://www.azoai.com/news/20240509/Impact-of-AI-Advice-and-Explainability-in-Personnel-Selection.aspx. (accessed November 21, 2024).

  • Harvard

    Chandrasekar, Silpaja. 2024. Impact of AI Advice and Explainability in Personnel Selection. AZoAi, viewed 21 November 2024, https://www.azoai.com/news/20240509/Impact-of-AI-Advice-and-Explainability-in-Personnel-Selection.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of AZoAi.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Tencent’s Hunyuan-Large AI Model Sets New Benchmark with 389 Billion Parameters