AI is used in manufacturing to optimize production processes, improve quality control, and enhance automation. It employs machine learning algorithms, robotics, and real-time data analysis to increase efficiency, reduce defects, and enable predictive maintenance, leading to improved productivity and cost savings in manufacturing operations.
Research paper reviews 55 green AI initiatives aimed at reducing energy consumption and carbon emissions while identifying the challenges of adopting sustainable AI technologies across industries. The study emphasizes collaboration, model efficiency, and ethical practices to advance green AI development.
This study compares four computer vision algorithms on a Raspberry Pi 4 platform for depalletizing applications. The analysis highlights pattern matching, SIFT, ORB, and Haar cascade methods, emphasizing low-cost, efficient object detection suitable for industrial and small-scale automation environments.
A machine learning framework optimized dry cooling system designs for supercritical CO2 Brayton cycle solar power plants, reducing lifetime cooling costs by 67%. The study highlights the potential for ML to accelerate cost-effective, sustainable energy solutions.
A comprehensive machine learning framework was developed to predict mechanical properties in metal additive manufacturing. By leveraging a vast dataset and advanced featurization techniques, the framework achieved high accuracy, offering a standardized platform for optimizing additive manufacturing processes.
Researchers developed an AI-driven framework for automating visual inspection in remanufacturing, applying supervised and reinforcement learning to optimize inspection poses. The approach, tested on electric starter motors, improved inspection accuracy and efficiency, laying the groundwork for advanced automated systems.
A recent study explored the use of a large language model-based voice-enabled digital intelligent assistant in manufacturing assembly processes. It found that while the system effectively reduced cognitive load and improved product quality, it did not significantly impact lead times.
A new AI-powered dataset, DsPCBSD+, categorizes PCB surface defects into nine types, aiding deep learning-based detection for quality control. Comprising 20,276 annotated defects across 10,259 images, it addresses real-world variability and enhances the precision of AI-driven PCB inspections.
Researchers leverage AI to optimize the design, fabrication, and performance forecasting of diffractive optical elements (DOEs). This integration accelerates innovation in optical technology, enhancing applications in imaging, sensing, and telecommunications.
Researchers explored the integration of 3D printing and machine learning (ML) with biodegradable polymers, highlighting advancements in material preparation, design, and post-processing for sustainable manufacturing.
Researchers detailed the impact of computer vision in textile manufacturing, focusing on identifying fabric imperfections and measuring cotton composition. They introduced a dataset of 1300 fabric images, expanded to 27,300 through augmentation, covering cotton percentages from 30% to 99%. This dataset aids in training machine learning models, streamlining traditionally labor-intensive cotton content assessments, and enhancing automation in the textile industry.
Researchers in Machines developed an AI-based predictive maintenance framework, integrating Industry 4.0 technologies and machine learning to enhance production efficiency. Applied to electromechanical component lines, it linked machine states with product quality, cutting downtime and scrap costs significantly.
A review in Materials & Design explores how big data, machine learning (ML), and digital twin technologies enhance additive manufacturing (AM). These technologies improve AM by optimizing design, material properties, and process efficiency, offering significant advancements in quality, efficiency, and sustainability.
Researchers have used ensemble machine learning models to predict mechanical properties of 3D-printed polylactic acid (PLA) specimens. Models like extremely randomized tree regression (ERTR) and random forest regression (RFR) excelled in predicting tensile strength and surface roughness, demonstrating the potential of ensemble methods in optimizing 3D printing parameters.
Researchers developed a novel framework integrating production simulation and reinforcement learning to optimize factory layouts, focusing on equipment placement, logistics paths, and AGV utilization. This multilayered approach significantly increased throughput, reduced logistics distances, and minimized AGV usage, offering a flexible and efficient solution for dynamic manufacturing environments.
A novel method combining infrared imaging and machine learning improves real-time heat management in metal 3D printing, enhancing part quality and process efficiency. The approach was experimentally validated, demonstrating robust performance across various geometries.
A review in Data & Knowledge Engineering investigates how AI enhances digital twins, highlighting improved functionalities and key research gaps. The integration of these technologies shows promise across various sectors, from healthcare to smart cities.
Researchers highlight wearable optical sensors as an emerging technology for sweat monitoring. These sensors utilize advancements in materials and structural design to convert sweat chemical data into optical signals, employing methods like colorimetry and SERS to provide non-invasive, continuous health monitoring.
Researchers developed advanced deep learning (DL)-based automatic feature recognition (AFR) methods that significantly enhance computer-aided design (CAD), process planning (CAPP), and manufacturing (CAM) integration. Their approach, using the multidimensional attributed face-edge graph (maFEG) and Sheet-metalNet, a graph neural network, improves recognition accuracy and adapts to evolving datasets, addressing limitations of traditional and voxelized representations.
Researchers developed a deep learning and particle swarm optimization (PSO) based system to enhance obstacle recognition and avoidance for inspection robots in power plants. This system, featuring a convolutional recurrent neural network (CRNN) for obstacle recognition and an artificial potential field method (APFM) based PSO algorithm for path planning, significantly improves accuracy and efficiency.
A novel framework combining deep learning and preprocessing algorithms significantly improved particle detection in manufacturing, addressing challenges posed by heterogeneous backgrounds. The framework, validated through extensive experimentation, enhanced in-situ process monitoring, offering robust, real-time solutions for diverse industrial applications.
Terms
While we only use edited and approved content for Azthena
answers, it may on occasions provide incorrect responses.
Please confirm any data provided with the related suppliers or
authors. We do not provide medical advice, if you search for
medical information you must always consult a medical
professional before acting on any information provided.
Your questions, but not your email details will be shared with
OpenAI and retained for 30 days in accordance with their
privacy principles.
Please do not ask questions that use sensitive or confidential
information.
Read the full Terms & Conditions.