Long Short-Term Memory (LSTM) is a type of recurrent neural network (RNN) architecture that is specifically designed to capture and retain long-term dependencies or patterns in sequential data. It addresses the vanishing gradient problem of traditional RNNs, allowing them to effectively model and remember information over longer sequences. LSTMs are widely used in various applications such as natural language processing, speech recognition, and time series analysis.
Researchers delve into AI's role in carbon reduction in buildings, discussing energy prediction, ML-driven emission mitigation, and carbon accounting. The paper underscores urgent emission reduction in construction, highlighting ML's potential to drive sustainable practices, with a focus on AI's positive impact on the low-carbon building sector.
Researchers present a distributed, scalable machine learning-based threat-hunting system tailored to the unique demands of critical infrastructure. By harnessing artificial intelligence and machine learning techniques, this system empowers cyber-security experts to analyze vast amounts of data in real-time, distinguishing between benign and malicious activities, and paving the way for enhanced threat detection and protection.
Researchers present an innovative framework that integrates voice and gesture commands through multimodal fusion, enabling effective and secure communication between humans and robots. This architecture, combined with a safety layer, ensures both natural interaction and compliance with safety measures, showcasing its potential through a comparative experiment in pick-and-place tasks.
Researchers introduce MAiVAR-T, a groundbreaking model that fuses audio and image representations with video to enhance multimodal human action recognition (MHAR). By leveraging the power of transformers, this innovative approach outperforms existing methods, presenting a promising avenue for accurate and nuanced understanding of human actions in various domains.
Researchers delve into the world of Green AI, a promising technology that combines artificial intelligence with sustainability practices to address energy forecasting and management challenges. The article explores applications in green energy load forecasting, power consumption prediction, and electricity price forecasting, highlighting the potential of Green AI to optimize energy distribution, promote renewable energy sources, and foster a greener and more sustainable future.
The study proposes a smart system for monitoring and detecting anomalies in IoT devices by leveraging federated learning and machine learning techniques. The system analyzes system call traces to detect intrusions, achieving high accuracy in classifying benign and malicious samples while ensuring data privacy. Future research directions include incorporating deep learning techniques, implementing multi-class classification, and adapting the system to handle the scale and complexity of IoT deployments.
FunQA, a novel video question-answering (QA) dataset, focuses on counter-intuitive and entertaining videos, aiming to evaluate and improve video reasoning capabilities. Existing VideoQA techniques struggle to comprehend the elements of humor and creativity in unexpected videos, highlighting the need for further advancements in video comprehension models.
Terms
While we only use edited and approved content for Azthena
answers, it may on occasions provide incorrect responses.
Please confirm any data provided with the related suppliers or
authors. We do not provide medical advice, if you search for
medical information you must always consult a medical
professional before acting on any information provided.
Your questions, but not your email details will be shared with
OpenAI and retained for 30 days in accordance with their
privacy principles.
Please do not ask questions that use sensitive or confidential
information.
Read the full Terms & Conditions.