AI is employed in object detection to identify and locate objects within images or video. It utilizes deep learning techniques, such as convolutional neural networks (CNNs), to analyze visual data, detect objects of interest, and provide bounding box coordinates, enabling applications like autonomous driving, surveillance, and image recognition.
Researchers developed a cutting-edge robot welding guidance system, integrating an enhanced YOLOv5 algorithm with a RealSense Depth Camera. Overcoming limitations of traditional sensors, the system enables precise weld groove detection, enhancing welding robot autonomy in complex industrial environments. The experiment showcased superior accuracy, reaching 90.8% mean average precision, and real-time performance at 20 FPS, marking a significant stride in welding automation and precision.
This study introduces a sophisticated pedestrian detection algorithm enhancing the lightweight YOLOV5 model for autonomous vehicles. Integrating extensive kernel attention mechanisms, lightweight coordinate attention, and adaptive loss tuning, the algorithm tackles challenges like occlusion and positioning inaccuracies. Experimental results show a noticeable accuracy boost, especially for partially obstructed pedestrians, offering promising advancements for safer interactions between vehicles and pedestrians in complex urban environments.
This research delves into the realm of electronic board manufacturing, aiming to enhance reliability and lifespan through the automated detection of solder splashes using cutting-edge machine learning algorithms. The study meticulously compares object detection models, emphasizing the efficacy of the custom-trained YOLOv8n model with 1.9 million parameters, showcasing a rapid 90 ms detection speed and an impressive mean average precision of 96.6%. The findings underscore the potential for increased efficiency and cost savings in electronic board manufacturing, marking a significant shift from manual inspection to advanced machine learning techniques.
This study presents an innovative method for predicting individual Chinese cabbage harvest weight using unmanned aerial vehicles (UAVs) and multi-temporal features. By automating plant detection with an object detection algorithm and leveraging various UAV data sources, the study achieves accurate and early predictions, addressing limitations in existing methods and offering valuable insights for precision agriculture and crop management.
This article in Nature features a groundbreaking approach for monitoring marine life behavior using Lite3D, a lightweight deep learning model. The real-time anomalous behavior recognition system, focusing on cobia and tilapia, outperforms traditional and AI-based methods, offering precision, speed, and efficiency. Lite3D's application in marine conservation holds promise for monitoring and protecting underwater ecosystems impacted by global warming and pollution.
This research, featured in Agronomy, introduces SPVDet, a deep learning-based object detection framework for identifying Sweet Potato Virus Disease (SPVD) in ground and aerial high-resolution images. The study showcases the superior performance of SPVDet and its lightweight version, SPVDet-Nano, emphasizing their potential for real-time detection and high-throughput phenotyping in sweet potato plantations.
Researchers have introduced an innovative approach, Augmented Reality in Human-Robot Collaboration (AR-HRC), to automate construction waste sorting (CWS) and enhance the safety and efficiency of waste management. By integrating AR technology, this method allows remote human assistance and minimizes direct exposure to hazards, ultimately improving occupational safety and the quality of waste sorting processes.
This article delves into the use of deep convolutional neural networks (DCNN) to detect and differentiate synthetic cannabinoids based on attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectra. The study demonstrates the effectiveness of DCNN models, including a vision transformer-based approach, in classifying and distinguishing synthetic cannabinoids, offering promising applications for drug identification and beyond.
Researchers have introduced a lightweight yet efficient safety helmet detection model, SHDet, based on the YOLOv5 architecture. This model optimizes the YOLOv5 backbone, incorporates upsampling and attention mechanisms, and achieves impressive performance with faster inference speeds, making it a promising solution for real-world applications on construction sites.
Researchers have developed an enhanced YOLOv8 model for detecting wildfire smoke using images captured by unmanned aerial vehicles (UAVs). This approach improves accuracy in various weather conditions and offers a promising solution for early wildfire detection and monitoring in complex forest environments.
This research introduces an innovative approach to robot representation learning, emphasizing the importance of human-oriented perceptual skills. By leveraging well-labeled video datasets containing human priors, the study enhances visual-motor control through human-guided fine-tuning and introduces the Task Fusion Decoder, which integrates multiple task-specific information.
Researchers introduce a groundbreaking object tracking algorithm, combining Siamese networks and CNN-based methods, achieving high precision and success scores in benchmark datasets. This innovation holds promise for various applications in computer vision, including autonomous driving and surveillance.
Researchers have developed a comprehensive approach to improving ship detection in synthetic aperture radar (SAR) images using machine learning and artificial intelligence. By selecting relevant papers, identifying key features, and employing the graph theory matrix approach (GTMA) for ranking methods, this research provides a robust framework for enhancing maritime operations and security through more accurate ship detection in challenging sea conditions and weather.
Researchers have introduced NeRF-Det, a cutting-edge method for indoor 3D object detection using RGB images. By integrating Neural Radiance Fields (NeRF) with 3D detection, NeRF-Det significantly enhances the accuracy of object detection in complex indoor scenes, making it a promising advancement for applications in robotics, augmented reality, and virtual reality.
Researchers present MGB-YOLO, an advanced deep learning model designed for real-time road manhole cover detection. Through a combination of MobileNet-V3, GAM, and BottleneckCSP, this model offers superior precision and computational efficiency compared to existing methods, with promising applications in traffic safety and infrastructure maintenance.
Researchers have introduced a groundbreaking Full Stage Auxiliary (FSA) network detector, leveraging auxiliary focal loss and advanced attention mechanisms, to significantly improve the accuracy of detecting marine debris and submarine garbage in challenging underwater environments. This innovative approach holds promise for more effective pollution control and recycling efforts in our oceans.
Researchers introduce NeuEvo, a framework that enhances spiking neural networks (SNNs) by incorporating diverse neural circuits inspired by biological nervous systems. This approach utilizes unsupervised spike-timing-dependent plasticity (STDP) learning for network structure refinement, resulting in SNNs with superior performance in classification and reinforcement learning tasks.
This paper explores the integration of artificial intelligence (AI) and computer vision (CV) technologies in addressing urban expansion challenges, particularly in optimizing container movement within seaports. Through a systematic review, it highlights the significant role of AI and CV in sustainable parking ecosystems, offering valuable insights for enhancing seaport management and smart city development.
Researchers have developed a cutting-edge ship detection and tracking model for inland waterways, addressing data scarcity issues. Leveraging few-shot learning and innovative transfer learning techniques, this model achieves remarkable accuracy, promising advancements in maritime safety and monitoring systems.
Researchers have developed DiffusionEngine (DE), a novel data scaling engine that simplifies and improves the process of obtaining high-quality training data for object detection tasks. DE combines a pre-trained diffusion model with a Detection-Adapter (DA) to generate precise annotations efficiently, leading to significant performance gains in object detection algorithms.
Terms
While we only use edited and approved content for Azthena
answers, it may on occasions provide incorrect responses.
Please confirm any data provided with the related suppliers or
authors. We do not provide medical advice, if you search for
medical information you must always consult a medical
professional before acting on any information provided.
Your questions, but not your email details will be shared with
OpenAI and retained for 30 days in accordance with their
privacy principles.
Please do not ask questions that use sensitive or confidential
information.
Read the full Terms & Conditions.