Long Short-Term Memory (LSTM) is a type of recurrent neural network (RNN) architecture that is specifically designed to capture and retain long-term dependencies or patterns in sequential data. It addresses the vanishing gradient problem of traditional RNNs, allowing them to effectively model and remember information over longer sequences. LSTMs are widely used in various applications such as natural language processing, speech recognition, and time series analysis.
Researchers present a novel approach, the Dictionary-Based Matching Graph Network (DBGN), for Biomedical Named Entity Recognition (BioNER). By incorporating biomedical dictionaries and utilizing BiLSTM and BioBERT encoders, DBGN outperforms existing models across various biomedical datasets, demonstrating significant advancements in entity recognition with improved efficiency.
This research introduces FakeStack, a powerful deep learning model combining BERT embeddings, Convolutional Neural Network (CNN), and Long Short-Term Memory (LSTM) for accurate fake news detection. Trained on diverse datasets, FakeStack outperforms benchmarks and alternative models across multiple metrics, demonstrating its efficacy in combating false news impact on public opinion.
This research delves into the synergy of Artificial Intelligence (AI) and Internet of Things (IoT) security. The study evaluates and compares various AI algorithms, including machine learning (ML) and deep learning (DL), for classifying and detecting IoT attacks. It introduces a novel taxonomy of AI methodologies for IoT security and identifies LSTM as the top-performing algorithm, emphasizing its potential applications in diverse fields.
Researchers unveil a pioneering method for accurately estimating food weight using advanced boosting regression algorithms trained on a vast Mediterranean cuisine image dataset. Achieving remarkable accuracy with a mean weight absolute error of 3.93 g, this innovative approach addresses challenges in dietary monitoring and offers a promising solution for diverse food types and shapes.
This paper introduces a groundbreaking approach to instill cultural transmission as a foundational social skill in artificial intelligence (AI) agents. By employing neural networks and reinforcement learning in a 3D simulation environment, the study demonstrates how AI agents can imitate humans in novel situations without prior human data, paving the way for significant advancements in artificial general intelligence.
This paper introduces FollowNet, a pioneering initiative addressing challenges in modeling car-following behavior. With a unified benchmark dataset consolidating over 80K car-following events from diverse public driving datasets, FollowNet sets a standard for evaluating and comparing car-following models, overcoming format inconsistencies in existing datasets.
Researchers emphasize the growing significance of radar-based human activity recognition (HAR) in safety and surveillance, highlighting its advantages over vision-based sensing in challenging conditions. The study reviews classical Machine Learning (ML) and Deep Learning (DL) approaches, with DL's advantage in avoiding manual feature extraction and ML's robust empirical basis. A comparative study on benchmark datasets evaluates performance and computational efficiency, aiming to establish a standardized assessment framework for radar-based HAR techniques.
The paper provides a comprehensive review of artificial intelligence (AI)-assisted wireless localization technologies addressing limitations in existing systems. It discusses AI algorithms to counteract signal quality deterioration, spatiotemporal asynchronization, non-line-of-sight (NLoS) event identification, and miscellaneous methods for performance enhancement.
This paper presents a groundbreaking approach to tackle beam management challenges in vehicle-to-vehicle (V2V) communication. Leveraging a deep reinforcement learning (DRL) framework, specifically the Iterative Twin Delayed Deep Deterministic (ITD3) model with Gated Recurrent Unit (GRU), the study significantly improves spectral efficiency and reliability in intelligent connected vehicles, crucial for advancing smart cities and intelligent transportation systems.
Researchers introduced and evaluated four metaheuristic algorithms—teaching–learning-based optimization, sine cosine algorithm, water cycle algorithm, and electromagnetic field optimization—integrated with a multi-layer perceptron neural network for predicting dissolved oxygen concentration in the Klamath River. These algorithms optimized computational variables, improving DO prediction accuracy in water quality assessment.
Researchers introduce a pioneering framework leveraging IoT and wearable technology to enhance the adaptability of AR glasses in the aviation industry. The multi-modal data processing system, employing kernel theory-based design and machine learning, classifies performance, offering a dynamic and adaptive approach for tailored AR information provision.
Researchers explored the application of artificial intelligence (AI), specifically long short-term memory (LSTM) and artificial neural networks (ANN), in assessing and predicting surface water quality. The study, conducted on the Ashwini River in Himachal Pradesh, India, showcased the effectiveness of LSTM models in accurate water quality prediction, emphasizing the potential of AI in resource management and environmental protection
Researchers present DEEPPATENT2, an extensive dataset containing over two million technical drawings derived from design patents. Addressing the limitations of previous datasets, DEEPPATENT2 provides rich semantic information, including object names and viewpoints, offering a valuable resource for advancing research in diverse areas such as 3D image reconstruction, image retrieval for technical drawings, and multimodal generative models for innovation.
Researchers introduce a pioneering method for urban economic competitiveness analysis in China, addressing the limitations of traditional approaches. Leveraging convolutional neural networks (CNN) and a rich urban feature dataset, augmented using deep convolutional Generative Adversarial Networks (DCGAN), the model offers a comprehensive understanding of urban development, overcoming data scarcity challenges and outperforming traditional methods.
Researchers introduced a groundbreaking hybrid model for short text filtering that combines an Artificial Neural Network (ANN) for new word weighting and a Hidden Markov Model (HMM) for accurate and efficient classification. The model excels in handling new words and informal language in short texts, outperforming other machine learning algorithms and demonstrating a promising balance between accuracy and speed, making it a valuable tool for real-world short text filtering applications.
This review article discusses the evolution of machine learning applications in weather and climate forecasting. It outlines the historical transition from statistical methods to physical models and the recent emergence of machine learning techniques. The article categorizes machine learning applications in climate prediction, covering both short-term weather forecasts and medium-to-long-term climate predictions.
This study presents an innovative system for business purchase prediction that combines Long Short-Term Memory (LSTM) neural networks with Explainable Artificial Intelligence (XAI). The system is designed to predict future purchases in a medical drug company, offering transparent explanations for its predictions, fostering user trust, and providing valuable insights for business decision-making.
This paper explores the integration of IoT with drone technology to enhance data communication and security across various industries, including agriculture and smart cities. The study focuses on the use of machine learning and deep learning techniques to detect cyberattacks within drone networks and presents a comprehensive framework for intrusion detection.
This research employs computational language models to challenge conventional assumptions about language learning difficulty. Contrary to prior expectations, the study reveals that languages with larger speaker populations tend to be more challenging to learn, offering valuable insights into linguistic diversity and language acquisition.
Researchers have introduced an innovative approach for modeling mixed wind farms using artificial neural networks (ANNs) to capture complex relationships between variables. This method effectively represents the external characteristics of mixed wind farms in various wind conditions and voltage dip scenarios, addressing the challenges of power system stability in the presence of diverse wind turbine types.
Terms
While we only use edited and approved content for Azthena
answers, it may on occasions provide incorrect responses.
Please confirm any data provided with the related suppliers or
authors. We do not provide medical advice, if you search for
medical information you must always consult a medical
professional before acting on any information provided.
Your questions, but not your email details will be shared with
OpenAI and retained for 30 days in accordance with their
privacy principles.
Please do not ask questions that use sensitive or confidential
information.
Read the full Terms & Conditions.