Artificial Intelligence (AI) refers to the simulation of human intelligence processes by machines, especially computer systems. These processes include learning (the acquisition of information and rules for using the information), reasoning (using rules to reach approximate or definite conclusions), and self-correction.
MarineGPT, a groundbreaking vision-language model designed specifically for the marine domain, has been developed to identify marine objects from visual inputs and provide comprehensive, scientific, and sensitive responses. This model leverages the Marine-5M dataset and offers improved marine vision and language alignment, contributing to increased public awareness of marine biodiversity while addressing some limitations.
Researchers discussed the development of "Living guidelines for responsible use of generative artificial intelligence (AI) in research." These guidelines, crafted by a collaboration of international scientific institutions, organizations, and policy advisers, aim to address the potential risks posed by generative AI and provide key principles for its responsible use in scientific research.
Researchers explored the influence of stingy bots in improving human welfare within experimental sharing networks. They conducted online experiments involving artificial agents with varying allocation behaviors, finding that stingy bots, when strategically placed, could enhance collective welfare by enabling reciprocal exchanges between individuals.
This article discusses the significance of verifiability in Wikipedia content and introduces the SIDE (System for Improving the Verifiability of Wikipedia References) system, which utilizes artificial intelligence (AI) to enhance the quality of references on Wikipedia. SIDE combines AI techniques with human efforts to identify unreliable citations and recommend better alternatives from the web, thereby improving the credibility of Wikipedia content.
SKY Perfect JSAT, a Japanese satellite communications company, has developed an AI-driven InSAR service that provides precise, cost-effective, and extensive coverage, improving safety across urban, rural, and wilderness settings, and potentially replacing labor-intensive ground-based surveys. The service has the potential to reduce uncertainties and enhance safety regarding landslides and subsidence issues in Japan.
Researchers have introduced FACTCHD, a framework for detecting fact-conflicting hallucinations in large language models (LLMs). They developed a benchmark that provides interpretable data for evaluating the factual accuracy of LLM-generated responses and introduced the TRUTH-TRIANGULATOR framework to enhance hallucination detection.
Tenchijin, a Japanese startup, is utilizing deep learning and satellite data to address issues with satellite internet, particularly the impact of weather on ground stations. Their AI system accurately predicts suitable ground stations, providing more reliable internet connectivity, and their COMPASS service has applications in renewable energy, agriculture, and city planning by optimizing land use decisions using a variety of data sources.
This study explores the application of artificial intelligence (AI) models for indoor fire prediction, specifically focusing on temperature, carbon monoxide (CO) concentration, and visibility. The research employs computational fluid dynamics (CFD) simulations and deep learning algorithms, including Long Short-Term Memory (LSTM), Convolutional Neural Network (CNN), and Transpose Convolution Neural Network (TCNN).
This review explores the applications of artificial intelligence (AI) in studying fishing fleet (FV) behavior, emphasizing the role of AI in monitoring and managing fisheries. The paper discusses data sources for FV behavior research, AI techniques used in monitoring FV behavior, and the uses of AI in identifying vessel types, forecasting fishery resources, and analyzing fishing density.
Researchers explored the application of distributed learning, particularly Federated Learning (FL), for Internet of Things (IoT) services in the context of emerging 6G networks. They discussed the advantages and challenges of distributed learning in IoT domains, emphasizing its potential for enhancing IoT services while addressing privacy concerns and the need for ongoing research in areas such as security and communication efficiency.
This review explores the landscape of social robotics research, addressing knowledge gaps and implications for business and management. It highlights the need for more studies on social robotic interactions in organizations, trust in human-robot relationships, and the impact of virtual social robots in the metaverse, emphasizing the importance of balancing technology integration with societal well-being.
Researchers introduced the Science4Cast benchmark to forecast future AI research, emphasizing the importance of network features for precise predictions. This approach offers a promising tool to accelerate scientific progress in artificial intelligence.
This study introduces a novel approach to autonomous vehicle navigation by leveraging machine vision, machine learning, and artificial intelligence. The research demonstrates that it's possible for vehicles to navigate unmarked roads using economical webcam-based sensing systems and deep learning, offering practical insights into enhancing autonomous driving in real-world scenarios.
This study investigates the role of social presence in shaping trust when collaborating with algorithms. The research reveals that the presence of others can enhance people's trust in algorithms, offering valuable insights into human-algorithm interactions and trust dynamics.
This article delves into the use of deep convolutional neural networks (DCNN) to detect and differentiate synthetic cannabinoids based on attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectra. The study demonstrates the effectiveness of DCNN models, including a vision transformer-based approach, in classifying and distinguishing synthetic cannabinoids, offering promising applications for drug identification and beyond.
This study explores the development and usability of the AIIS (Artificial Intelligence, Innovation, and Society) collaborative learning interface, a metaverse-based educational platform designed for undergraduate students. The research demonstrates the potential of immersive technology in education and offers insights and recommendations for enhancing metaverse-based learning systems.
This research paper introduces innovative machine learning techniques, including Artificial Neural Networks (ANN) and Support Vector Machines (SVM), to assess critical speeds on railway tracks, especially those on soft soils. The study's dataset, created through advanced numerical methods and validated experiments, supports the development of predictive models for assessing critical speeds in various track sections.
Researchers have introduced a lightweight yet efficient safety helmet detection model, SHDet, based on the YOLOv5 architecture. This model optimizes the YOLOv5 backbone, incorporates upsampling and attention mechanisms, and achieves impressive performance with faster inference speeds, making it a promising solution for real-world applications on construction sites.
Researchers have harnessed the power of Vision Transformers (ViT) to revolutionize fashion image classification and recommendation systems. Their ViT-based models outperformed CNN and pre-trained models, achieving impressive accuracy in classifying fashion images and providing efficient and accurate recommendations, showcasing the potential of ViTs in the fashion industry.
This research paper delves into the black box problem in clinical artificial intelligence (AI) and its implications for health professional-patient relationships. Drawing on African scholarship, the study highlights the importance of trust, transparency, and explainability in clinical AI to ensure ethical healthcare practices and genuine fiduciary relationships between healthcare professionals and patients.
Terms
While we only use edited and approved content for Azthena
answers, it may on occasions provide incorrect responses.
Please confirm any data provided with the related suppliers or
authors. We do not provide medical advice, if you search for
medical information you must always consult a medical
professional before acting on any information provided.
Your questions, but not your email details will be shared with
OpenAI and retained for 30 days in accordance with their
privacy principles.
Please do not ask questions that use sensitive or confidential
information.
Read the full Terms & Conditions.