Artificial Intelligence (AI) refers to the simulation of human intelligence processes by machines, especially computer systems. These processes include learning (the acquisition of information and rules for using the information), reasoning (using rules to reach approximate or definite conclusions), and self-correction.
This article explores the rising significance of Quantum Machine Learning (QML) in reshaping the scientific landscape. With attention from tech giants like IBM and Google, QML combines quantum computing and machine learning, holding promise despite challenges. The article highlights ongoing studies, the application landscape, challenges such as quantum-classical data fusion, and the potential of quantum sensing techniques, urging a balanced focus on experimentation over solely relying on theoretical quantum speed-up claims.
Researchers focus on improving pedestrian safety within intelligent cities using AI, specifically support vector machine (SVM). Leveraging machine learning and authentic pedestrian behavior data, the SVM model outperforms others in predicting crossing probabilities and speeds, demonstrating its potential for enhancing road traffic safety and integrating with intelligent traffic simulations. The study emphasizes the significance of SVM in accurately predicting real-time pedestrian behaviors, contributing to refined decision models for safer road designs.
This study introduces an AI-based system predicting gait quality progression. Leveraging kinematic data from 734 patients with gait disorders, the researchers explore signal and image-based approaches, achieving promising results with neural networks. The study marks a pioneering application of AI in predicting gait variations, offering insights into future advancements in this critical domain of healthcare.
Researchers propose an AI-powered robotic crop farm, Agrorobotix, utilizing deep reinforcement learning (DRL) for enhanced urban agriculture. Tested in simulated conditions, Agrorobotix showcased a 16.3% increase in crop yield, 21.7% reduced water usage, and a 33% decline in chemical usage compared to conventional methods, highlighting its potential to transform urban farming, improve food security, and contribute to smart city development.
Researchers present an AI platform, Stochastic OnsagerNet (S-OnsagerNet), that autonomously learns clear thermodynamic descriptions of intricate non-equilibrium systems from microscopic trajectory observations. This innovative approach, rooted in the generalized Onsager principle, enables the interpretation of complex phenomena, showcasing its effectiveness in understanding polymer stretching dynamics and demonstrating potential applications in diverse dissipative processes like glassy systems and protein folding.
This paper unveils the Elderly and Visually Impaired Human Activity Monitoring (EV-HAM) system, a pioneering solution utilizing artificial intelligence, digital twins, and Wi-Sense for accurate activity recognition. Employing Deep Hybrid Convolutional Neural Networks on Wi-Fi Channel State Information data, the system achieves a remarkable 99% accuracy in identifying micro-Doppler fingerprints of activities, presenting a revolutionary advancement in elderly and visually impaired care through continuous monitoring and crisis intervention.
This study explores the synergies between artificial intelligence (AI) and electronic skin (e-skin) systems, envisioning a transformative impact on robotics and medicine. E-skins, equipped with diverse sensors, offer a wealth of health data, and the integration of advanced machine learning techniques promises to revolutionize data analysis, optimize hardware, and propel applications from prosthetics to personalized health diagnostics.
This study introduces a deep learning-based Motor Assessment Model (MAM) designed to automate General Movement Assessment (GMA) in infants, predicting the risk of cerebral palsy (CP). The MAM, utilizing 3D pose estimation and Transformer architecture, demonstrated high accuracy, sensitivity, and specificity in identifying fidgety movements, essential for CP risk assessment. With interpretability, the model aids GMA beginners and holds promise for streamlined, accessible, and early CP screening, potentially transforming video-based diagnostics for infant motor abnormalities.
This paper emphasizes the crucial role of machine learning (ML) in detecting and combating fake news amid the proliferation of misinformation on social media. The study reviews various ML techniques, including deep learning, natural language processing (NLP), ensemble learning, transfer learning, and graph-based approaches, highlighting their strengths and limitations in fake news detection. The researchers advocate for a multifaceted strategy, combining different techniques and optimizing computational strategies to address the complex challenges of identifying misinformation in the digital age.
This article covers breakthroughs and innovations in natural language processing, computer vision, and data security. From addressing logical reasoning challenges with the discourse graph attention network to advancements in text classification using BERT models, lightweight mask detection in computer vision, sports analytics employing network graph theory, and data security through image steganography, the authors showcase the broad impact of AI across various domains.
This study introduces a Digital Twin (DT)-centered Fire Safety Management (FSM) framework for smart buildings. Harnessing technologies like AI, IoT, AR, and BIM, the framework enhances decision-making, real-time information access, and FSM efficiency. Evaluation by Facility Management professionals affirms its effectiveness, with a majority expressing confidence in its clarity, data security, and utility for fire evacuation planning and Fire Safety Equipment (FSE) maintenance.
Researchers introduced Swin-APT, a deep learning-based model for semantic segmentation and object detection in Intelligent Transportation Systems (ITSs). The model, incorporating a Swin-Transformer-based lightweight network and a multiscale adapter network, demonstrated superior performance in road segmentation and marking detection tasks, outperforming existing models on various datasets, including achieving a remarkable 91.2% mIoU on the BDD100K dataset.
LlamaGuard, a safety-focused LLM model, employs a robust safety risk taxonomy for content moderation in human-AI conversations. Leveraging fine-tuning and instruction-following frameworks, it excels in adaptability, outperforming existing tools on internal and public datasets. LlamaGuard's versatility positions it as a strong baseline for content moderation, showcasing superior overall performance and efficiency in handling diverse taxonomies with minimal retraining efforts.
Researchers from Nanjing University of Science and Technology present a novel scheme, Spatial Variation-Dependent Verification (SVV), utilizing convolutional neural networks and textural features for handwriting identification and verification. The scheme outperforms existing methods, achieving 95.587% accuracy, providing a robust solution for secure handwriting recognition and authentication in diverse applications, including security, forensics, banking, education, and healthcare.
The CYBERSECEVAL benchmark addresses cybersecurity risks in Large Language Models (LLMs) used for coding support. The evaluation, involving seven models, highlights significant concerns, revealing a 30% occurrence of insecure code suggestions and a 53% compliance rate in aiding cyberattacks. This benchmark emphasizes the critical need to integrate security considerations in LLM development, providing a robust framework for ongoing research to enhance AI safety in the context of evolving LLM usage.
Researchers employ deep neural networks and machine learning to predict facial landmarks and pain scores in cats using the Feline Grimace Scale. The study demonstrates advanced CNN models accurately predicting facial landmarks and an XGBoost model achieving high accuracy in discerning painful and non-painful cats. This breakthrough paves the way for an automated smartphone application, addressing the challenge of non-verbal pain assessment in felines and marking a significant advancement in veterinary care.
Researchers from China introduce the SZU-EmoDage dataset, a pioneering facial dataset crafted with StyleGAN, featuring Chinese individuals of diverse ages and expressions. This innovative dataset, validated for authenticity by human raters, surpasses existing ones, offering applications in cross-cultural emotion studies and advancements in facial perception technology. The study emphasizes the dataset's value in exploring cognitive processes, detecting disorders, and enhancing technologies like face recognition and animation.
Researchers present a groundbreaking privacy-preserving dialogue model framework, integrating Fully Homomorphic Encryption (FHE) with dynamic sparse attention (DSA). This innovative approach enhances efficiency and accuracy in dialogue systems while prioritizing user privacy. Experimental analyses demonstrate significant improvements in precision, recall, accuracy, and latency, positioning the proposed framework as a powerful solution for secure natural language processing tasks in the information era.
Researchers from Meta present Audiobox, a novel model integrating flow-matching techniques for controllable and versatile audio generation. Audiobox demonstrates unprecedented controllability across various audio modalities, such as speech and sound, addressing limitations in existing generative models. The proposed Joint-CLAP evaluation metric correlates strongly with human judgment, showcasing Audiobox's potential for transformative applications in podcasting, movies, ads, and audiobooks.
Researchers detail a groundbreaking approach for creating realistic train-and-test datasets to evaluate machine learning models in software bug assignments. The novel method, based on time dependencies, addresses limitations in existing techniques, ensuring more reliable assessments in real-world scenarios. The proposed method offers potential applications in telecommunication, software quality prediction, and maintenance, contributing to the development of bug-free software applications.
Terms
While we only use edited and approved content for Azthena
answers, it may on occasions provide incorrect responses.
Please confirm any data provided with the related suppliers or
authors. We do not provide medical advice, if you search for
medical information you must always consult a medical
professional before acting on any information provided.
Your questions, but not your email details will be shared with
OpenAI and retained for 30 days in accordance with their
privacy principles.
Please do not ask questions that use sensitive or confidential
information.
Read the full Terms & Conditions.