Long Short-Term Memory (LSTM) is a type of recurrent neural network (RNN) architecture that is specifically designed to capture and retain long-term dependencies or patterns in sequential data. It addresses the vanishing gradient problem of traditional RNNs, allowing them to effectively model and remember information over longer sequences. LSTMs are widely used in various applications such as natural language processing, speech recognition, and time series analysis.
Researchers introduce machine learning-powered stretchable smart textile gloves, featuring embedded helical sensor yarns and IMUs. Overcoming the limitations of camera-based systems, these gloves provide accurate and washable tracking of complex hand movements, offering potential applications in robotics, sports training, healthcare, and human-computer interaction.
Researchers introduce the multi-feature fusion transformer (MFT) for named entity recognition (NER) in aerospace text. MFT, utilizing a unique structure and integrating radical features, outshines existing models, demonstrating exceptional performance and paving the way for enhanced AI applications in aerospace research.
Researchers introduce an advanced wind speed prediction model using a refined Hilbert–Huang transform (HHT) with complementary ensemble empirical mode decomposition (CEEMD). Leveraging a dynamic neural network, this model significantly improves accuracy in wind speed time series modeling, addressing the challenges posed by the unpredictable nature of wind speeds. The optimized HHT-NAR model demonstrates superior performance in wind-rich and wind-limited areas, contributing to the effective scheduling and control of wind farms and promoting the stability of power systems for sustainable wind energy utilization.
In a breakthrough study published in Scientific Reports, researchers propose an innovative onboard earthquake detection system tailored for South Korean high-speed trains. Leveraging unsupervised anomaly detection and deep learning models, the system analyzes average vibration data to swiftly identify seismic events, providing a critical early warning mechanism. The research showcases the potential to enhance safety measures in the face of increasing seismic activity, emphasizing the need for interconnected warning systems in the realm of emerging high-speed rail networks.
Korean researchers introduce a groundbreaking framework marrying Explainable AI (XAI) and Zero-Trust Architecture (ZTA) for robust cyberdefense in marine communication networks. Their deep neural network, Zero-Trust Network Intrusion Detection System (NIDS), not only exhibits remarkable accuracy in classifying cyber threats but also integrates XAI methodologies, SHAP and LIME, to provide interpretable insights. This innovative approach fosters transparency and collaboration between AI systems and human experts, promising enhanced cybersecurity in marine, and potentially other, critical infrastructures.
Researchers present a groundbreaking integrated agricultural system utilizing IoT-equipped sensors and AI models for precise rainfall prediction and fruit health monitoring. The innovative approach combines CNN, LSTM, and attention mechanisms, demonstrating high accuracy and user-friendly interfaces through web applications, heralding a transformative era in data-driven agriculture.
This study introduces an AI-based system predicting gait quality progression. Leveraging kinematic data from 734 patients with gait disorders, the researchers explore signal and image-based approaches, achieving promising results with neural networks. The study marks a pioneering application of AI in predicting gait variations, offering insights into future advancements in this critical domain of healthcare.
This study proposes an innovative approach to enhance road safety by introducing a CNN-LSTM model for driver sleepiness detection. Combining facial movement analysis and deep learning, the model outperforms existing methods, achieving over 98% accuracy in real-world scenarios, paving the way for effective implementation in smart vehicles to proactively prevent accidents caused by driver fatigue.
Researchers advocate for employing artificial neural networks (ANNs) as "artificial physics engines" to compute complex inverse dynamics in human arm and hand movements. The study showcases ANNs' potential in enhancing assistive technologies, such as prosthetics and exoskeletons, offering a detailed, customizable, and reactive approach for more natural movement in individuals with impaired motor function.
Researchers introduce Pearl, a meticulously designed RL agent software addressing challenges like delayed rewards, partial observability, and safety constraints. Pearl's modular design facilitates efficient learning in sequential decision-making, supporting offline learning, exploration, and safety considerations within a unified framework. Through extensive benchmarking, Pearl showcases superior performance across diverse tasks, establishing itself as a production-ready solution with a broad range of applications in real-world scenarios.
Researchers present a novel approach, the Dictionary-Based Matching Graph Network (DBGN), for Biomedical Named Entity Recognition (BioNER). By incorporating biomedical dictionaries and utilizing BiLSTM and BioBERT encoders, DBGN outperforms existing models across various biomedical datasets, demonstrating significant advancements in entity recognition with improved efficiency.
This research introduces FakeStack, a powerful deep learning model combining BERT embeddings, Convolutional Neural Network (CNN), and Long Short-Term Memory (LSTM) for accurate fake news detection. Trained on diverse datasets, FakeStack outperforms benchmarks and alternative models across multiple metrics, demonstrating its efficacy in combating false news impact on public opinion.
This research delves into the synergy of Artificial Intelligence (AI) and Internet of Things (IoT) security. The study evaluates and compares various AI algorithms, including machine learning (ML) and deep learning (DL), for classifying and detecting IoT attacks. It introduces a novel taxonomy of AI methodologies for IoT security and identifies LSTM as the top-performing algorithm, emphasizing its potential applications in diverse fields.
Researchers unveil a pioneering method for accurately estimating food weight using advanced boosting regression algorithms trained on a vast Mediterranean cuisine image dataset. Achieving remarkable accuracy with a mean weight absolute error of 3.93 g, this innovative approach addresses challenges in dietary monitoring and offers a promising solution for diverse food types and shapes.
This paper introduces FollowNet, a pioneering initiative addressing challenges in modeling car-following behavior. With a unified benchmark dataset consolidating over 80K car-following events from diverse public driving datasets, FollowNet sets a standard for evaluating and comparing car-following models, overcoming format inconsistencies in existing datasets.
Researchers emphasize the growing significance of radar-based human activity recognition (HAR) in safety and surveillance, highlighting its advantages over vision-based sensing in challenging conditions. The study reviews classical Machine Learning (ML) and Deep Learning (DL) approaches, with DL's advantage in avoiding manual feature extraction and ML's robust empirical basis. A comparative study on benchmark datasets evaluates performance and computational efficiency, aiming to establish a standardized assessment framework for radar-based HAR techniques.
The paper provides a comprehensive review of artificial intelligence (AI)-assisted wireless localization technologies addressing limitations in existing systems. It discusses AI algorithms to counteract signal quality deterioration, spatiotemporal asynchronization, non-line-of-sight (NLoS) event identification, and miscellaneous methods for performance enhancement.
This paper presents a groundbreaking approach to tackle beam management challenges in vehicle-to-vehicle (V2V) communication. Leveraging a deep reinforcement learning (DRL) framework, specifically the Iterative Twin Delayed Deep Deterministic (ITD3) model with Gated Recurrent Unit (GRU), the study significantly improves spectral efficiency and reliability in intelligent connected vehicles, crucial for advancing smart cities and intelligent transportation systems.
Researchers introduced and evaluated four metaheuristic algorithms—teaching–learning-based optimization, sine cosine algorithm, water cycle algorithm, and electromagnetic field optimization—integrated with a multi-layer perceptron neural network for predicting dissolved oxygen concentration in the Klamath River. These algorithms optimized computational variables, improving DO prediction accuracy in water quality assessment.
Researchers introduce a pioneering framework leveraging IoT and wearable technology to enhance the adaptability of AR glasses in the aviation industry. The multi-modal data processing system, employing kernel theory-based design and machine learning, classifies performance, offering a dynamic and adaptive approach for tailored AR information provision.
Terms
While we only use edited and approved content for Azthena
answers, it may on occasions provide incorrect responses.
Please confirm any data provided with the related suppliers or
authors. We do not provide medical advice, if you search for
medical information you must always consult a medical
professional before acting on any information provided.
Your questions, but not your email details will be shared with
OpenAI and retained for 30 days in accordance with their
privacy principles.
Please do not ask questions that use sensitive or confidential
information.
Read the full Terms & Conditions.