Anomaly detection with AI involves using machine learning or statistical algorithms to identify patterns in data and flag unusual or unexpected observations, often used for fraud detection, system health monitoring, or outlier detection in datasets. These algorithms learn from historical data to predict what is normal and then identify deviations from this norm.
Researchers present a distributed, scalable machine learning-based threat-hunting system tailored to the unique demands of critical infrastructure. By harnessing artificial intelligence and machine learning techniques, this system empowers cyber-security experts to analyze vast amounts of data in real-time, distinguishing between benign and malicious activities, and paving the way for enhanced threat detection and protection.
Researchers propose an innovative approach to enhance the air pollutant removal system in coal-fired power plants. By integrating AI-driven models, Monte Carlo simulations, and multi-criteria decision-making, this study offers an optimized configuration for sustainable pollutant control.
The proposed setup showcases promising outcomes, including economic efficiency, environmental quality improvement, and enhanced reliability, underscoring the potential for transforming pollutant management in the energy industry.
Researchers proposed a machine learning strategy to identify and classify organized retail crime (ORC) listings on a well-known online marketplace. The approach utilizes supervised learning and advanced techniques, achieving high recall scores of 0.97 on the holdout set and 0.94 on the testing dataset.
This cutting-edge research explores a novel deep learning approach for network intrusion detection using a smaller feature vector. Achieving higher accuracy and reduced computational complexity, this method offers significant advancements in cybersecurity defense against evolving threats.
The study proposes a smart system for monitoring and detecting anomalies in IoT devices by leveraging federated learning and machine learning techniques. The system analyzes system call traces to detect intrusions, achieving high accuracy in classifying benign and malicious samples while ensuring data privacy. Future research directions include incorporating deep learning techniques, implementing multi-class classification, and adapting the system to handle the scale and complexity of IoT deployments.
Researchers explore the catastrophic risks of advanced AI development and provide strategies to mitigate them, including addressing malicious use, managing AI races, handling organizational risks, and controlling rogue AIs through safety measures and proactive measures.
Terms
While we only use edited and approved content for Azthena
answers, it may on occasions provide incorrect responses.
Please confirm any data provided with the related suppliers or
authors. We do not provide medical advice, if you search for
medical information you must always consult a medical
professional before acting on any information provided.
Your questions, but not your email details will be shared with
OpenAI and retained for 30 days in accordance with their
privacy principles.
Please do not ask questions that use sensitive or confidential
information.
Read the full Terms & Conditions.