Deep Learning is a subset of machine learning that uses artificial neural networks with multiple layers (hence "deep") to model and understand complex patterns in datasets. It's particularly effective for tasks like image and speech recognition, natural language processing, and translation, and it's the technology behind many advanced AI systems.
This study explores the application of artificial intelligence (AI) models for indoor fire prediction, specifically focusing on temperature, carbon monoxide (CO) concentration, and visibility. The research employs computational fluid dynamics (CFD) simulations and deep learning algorithms, including Long Short-Term Memory (LSTM), Convolutional Neural Network (CNN), and Transpose Convolution Neural Network (TCNN).
This review explores the applications of artificial intelligence (AI) in studying fishing fleet (FV) behavior, emphasizing the role of AI in monitoring and managing fisheries. The paper discusses data sources for FV behavior research, AI techniques used in monitoring FV behavior, and the uses of AI in identifying vessel types, forecasting fishery resources, and analyzing fishing density.
This research introduces TabNet-IDS, an innovative Intrusion Detection System for IoT networks. The model leverages deep learning and attentive mechanisms to enhance security in IoT systems, achieving high accuracy rates on various datasets while maintaining model interpretability, thus serving as a promising tool for safeguarding networked devices.
This study introduces a novel approach to autonomous vehicle navigation by leveraging machine vision, machine learning, and artificial intelligence. The research demonstrates that it's possible for vehicles to navigate unmarked roads using economical webcam-based sensing systems and deep learning, offering practical insights into enhancing autonomous driving in real-world scenarios.
This article delves into the use of deep convolutional neural networks (DCNN) to detect and differentiate synthetic cannabinoids based on attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectra. The study demonstrates the effectiveness of DCNN models, including a vision transformer-based approach, in classifying and distinguishing synthetic cannabinoids, offering promising applications for drug identification and beyond.
Researchers have introduced a lightweight yet efficient safety helmet detection model, SHDet, based on the YOLOv5 architecture. This model optimizes the YOLOv5 backbone, incorporates upsampling and attention mechanisms, and achieves impressive performance with faster inference speeds, making it a promising solution for real-world applications on construction sites.
Researchers have harnessed the power of Vision Transformers (ViT) to revolutionize fashion image classification and recommendation systems. Their ViT-based models outperformed CNN and pre-trained models, achieving impressive accuracy in classifying fashion images and providing efficient and accurate recommendations, showcasing the potential of ViTs in the fashion industry.
The paper introduces the ODEL-YOLOv5s model, designed to address the challenges of obstacle detection in coal mines using deep learning target detection algorithms. This model improves detection accuracy, real-time responsiveness, and safety for driverless electric locomotives in the challenging coal mine environment. It outperforms other target detection algorithms, making it a promising solution for obstacle identification in coal mines.
Researchers apply three deep learning models and Bayesian Model Averaging (BMA) to enhance water level predictions at multiple stations around Poyang Lake. Their approach, combining DL models with BMA, demonstrated improved accuracy in forecasting and reduced uncertainty, offering valuable insights for disaster mitigation and resource management in the region.
The use of Artificial Intelligence (AI) in environmental science is on the rise, offering efficient ways to analyze complex data and address ecological concerns. However, the energy consumption and carbon emissions associated with AI models are concerns that need mitigation. Collaboration between environmental and AI experts is essential to maximize AI's potential in addressing environmental challenges while ensuring ethical and sustainable practices.
This article discusses the application of machine learning models to predict anomalies in daily maximum temperatures in India from March to June. The study evaluates various machine learning models and identifies an optimal model, emphasizing its effectiveness in forecasting extreme temperature events, with the potential to complement numerical weather prediction models.
Researchers revisit generative models' potential to enhance visual data comprehension, introducing DiffMAE—a novel approach that combines diffusion models and masked autoencoders (MAE). DiffMAE demonstrates significant advantages in tasks such as image inpainting and video processing, shedding light on the evolving landscape of generative pre-training for visual data understanding and recognition.
Researchers introduce a groundbreaking object tracking algorithm, combining Siamese networks and CNN-based methods, achieving high precision and success scores in benchmark datasets. This innovation holds promise for various applications in computer vision, including autonomous driving and surveillance.
Researchers have developed a comprehensive approach to improving ship detection in synthetic aperture radar (SAR) images using machine learning and artificial intelligence. By selecting relevant papers, identifying key features, and employing the graph theory matrix approach (GTMA) for ranking methods, this research provides a robust framework for enhancing maritime operations and security through more accurate ship detection in challenging sea conditions and weather.
Researchers used a combination of machine learning and deep learning models, including Bi-LSTM variants, to improve short-term solar energy predictions based on climatic factors in Amherst. Deep learning models consistently outperformed traditional machine learning techniques, highlighting their potential to enhance the accuracy and reliability of solar energy forecasts, crucial for efficient renewable energy utilization.
This comprehensive review explores the growing use of machine learning and satellite data in water quality monitoring, emphasizing the importance of proper data analysis techniques and highlighting the potential for advancements in environmental understanding.
This study investigates the impact of cross-validation methods on the diagnostic performance of deep-learning-based computer-aided diagnosis (CAD) systems using augmented neuroimaging data. Using EEG data from post-traumatic stress disorder patients and controls, the researchers found that data augmentation improved performance.
Researchers conducted a comprehensive bibliometric exploration of non-destructive testing techniques for assessing fruit quality. Leveraging Web of Science data, they unveiled evolving research trends, hotspots, and the promising integration of advanced technologies like machine vision and deep learning, offering valuable insights for the fruit industry's competitiveness and quality assurance.
Explore the cutting-edge advancements in image processing through reinforcement learning and deep learning, promising enhanced accuracy and real-world applications, while acknowledging the challenges that lie ahead for these transformative technologies.
Researchers present MGB-YOLO, an advanced deep learning model designed for real-time road manhole cover detection. Through a combination of MobileNet-V3, GAM, and BottleneckCSP, this model offers superior precision and computational efficiency compared to existing methods, with promising applications in traffic safety and infrastructure maintenance.
Terms
While we only use edited and approved content for Azthena
answers, it may on occasions provide incorrect responses.
Please confirm any data provided with the related suppliers or
authors. We do not provide medical advice, if you search for
medical information you must always consult a medical
professional before acting on any information provided.
Your questions, but not your email details will be shared with
OpenAI and retained for 30 days in accordance with their
privacy principles.
Please do not ask questions that use sensitive or confidential
information.
Read the full Terms & Conditions.