In the context of AI, a Decision Tree is a type of supervised learning algorithm that is mostly used in classification problems. It works for both categorical and continuous input and output variables. In this technique, we split the data into two or more homogeneous sets based on the most significant differentiator in input variables. Each internal node of the tree corresponds to an attribute, and each leaf node corresponds to a class label.
Researchers detail advancements in using Random Forest (RF) models to pinpoint tax risks within real estate, providing insights into discrepancies between declared values and model judgments. By meticulously selecting indicators and leveraging historical data, the RF model emerges as a robust tool for tax risk identification, offering decision support for tax authorities and promoting improved compliance levels within the real estate industry.
This study delves into the utilization of machine learning techniques to predict and enhance the flavor of beer, based on its intricate chemical properties, aiming to tailor brews to consumer preferences. By integrating vast datasets encompassing chemical properties, sensory attributes, and consumer feedback, researchers developed accurate predictive models, offering promising avenues for personalized beer variants and enhanced consumer satisfaction.
In their study published in Scientific Reports, researchers introduced the IABC-MLP model for predicting concrete compressive strength. This innovative approach combines an improved artificial bee colony algorithm (IABC) with a multilayer perceptron (MLP) model, addressing issues like local optima and slow convergence. Comparative analyses demonstrated that IABC-MLP outperformed traditional methods and other heuristic algorithms in accuracy and convergence speed, showcasing its potential for real-world applications in concrete strength prediction.
In a recent paper published in Scientific Reports, researchers addressed the challenges of accurately diagnosing migraine headaches using machine learning (ML) techniques. Leveraging state-of-the-art ML algorithms such as support vector machine (SVM), k-nearest neighbors (KNN), random forest (RF), decision tree (DST), and deep neural networks (DNN), the study demonstrated remarkable effectiveness in classifying seven different types of migraines.
Researchers developed a comprehensive system leveraging IoT and cloud computing to monitor and predict drinking water quality in real-time. The system integrates sensors, microcontrollers, web servers, and machine learning models to collect, transmit, analyze, and predict water quality parameters. Machine learning algorithms, particularly decision trees, achieved high accuracy in predicting drinkability, demonstrating the system's potential to enhance water safety and contribute to achieving Sustainable Development Goals.
Researchers leverage machine learning techniques to categorize canine personality types using the C-BARQ dataset, identifying five distinct clusters. The decision tree model emerges as the most accurate classifier, shedding light on behavioral patterns crucial for dog selection and training. This study highlights the potential of AI in enhancing our understanding of canine temperament and behavior, with implications for public health and specialized roles like working dogs.
Chinese researchers introduce a novel approach, inspired by random forest, for constructing deep neural networks using fragmented images and ensemble learning. Demonstrating enhanced accuracy and stability on image classification datasets, the method offers a practical and efficient solution, reducing technical complexity and hardware requirements in deep learning applications.
Researchers from multiple countries introduced a groundbreaking method using machine learning (ML) models to predict the effluent soluble chemical oxygen demand (SCOD) in a two-stage anaerobic onsite sanitation system. Outperforming conventional models, the ML approach, led by the artificial neural network (ANN), not only enhances prediction accuracy but also offers simplicity, speed, and reliability in optimizing and controlling wastewater treatment processes, marking a significant leap in sustainable sanitation technology.
Researchers from the UK, Germany, USA, and Canada unveiled a groundbreaking quantum-enhanced cybersecurity analytics framework using hybrid quantum machine learning algorithms. The novel approach leverages quantum computing to efficiently detect malicious domain names generated by domain generation algorithms (DGAs), showcasing superior speed, accuracy, and stability compared to traditional methods, marking a significant advancement in proactive cybersecurity analytics.
Researchers from Beijing University introduce Oracle-MNIST, a challenging dataset of 30,222 ancient Chinese characters, providing a realistic benchmark for machine learning (ML) algorithms. The Oracle-MNIST dataset, derived from oracle-bone inscriptions of the Shang Dynasty, surpasses traditional MNIST datasets in complexity, serving as a valuable tool not only for advancing ML research but also for enhancing the study of ancient literature, archaeology, and cultural heritage preservation.
Researchers presented a groundbreaking method for predicting industrial product manufacturing quality. Leveraging Synthetic Minority Oversampling Technique (SMOTE), Extreme Gradient Boosting (XGBoost), and edge computing, the active control approach tackles imbalanced data challenges in quality prediction, introducing a novel framework for flexible industrial data handling. The study's application in brake disc production showcased superior performance, with the proposed SMOTE-XGboost_t method outperforming other classifiers, demonstrating its effectiveness in real-world industrial environments.
USA researchers delve into the intersection of machine learning and climate-induced health impacts. The review identifies the potential of ML algorithms in predicting health outcomes from extreme weather events, emphasizing feasibility, promising results, and ethical considerations, paving the way for proactive healthcare and policy decisions in the face of climate change.
Researchers unveil Somnotate, a groundbreaking device for automated sleep stage classification. Leveraging probabilistic modeling and context awareness, Somnotate outperforms existing methods, surpasses human expertise, and unravels novel insights into sleep dynamics, setting new standards in polysomnography and offering a valuable resource for sleep researchers.
This groundbreaking article presents a comprehensive three-tiered approach, utilizing machine learning to assess Division-1 Women's basketball performance at the player, team, and conference levels. Achieving over 90% accuracy, the predictive models offer nuanced insights, enabling coaches to optimize training strategies and enhance overall sports performance. This multi-level, data-driven methodology signifies a significant leap in the intersection of artificial intelligence and sports analytics, paving the way for dynamic athlete development and strategic team planning.
This research paper introduces an ensemble learning model, combining extreme gradient boosting (XGBoost) and random forest (RF) algorithms, to optimize bank marketing strategies. By leveraging financial datasets, the model demonstrates superior accuracy, achieving a 91% accuracy rate and outperforming other algorithms, leading to substantial sales growth (25.67%) and increased customer satisfaction (20.52%). The study provides valuable insights for banking decision-makers seeking to enhance marketing precision and customer relationships.
Researchers leverage synchrotron X-ray imaging and machine learning models, including deep convolutional neural networks (ConvNets) and semantic segmentation, to predict laser absorptance and segment vapor depressions in metal additive manufacturing. The end-to-end and modular approaches showcase efficient and interpretable solutions, offering potential for real-time monitoring and decision-making in industrial processes.
Researchers focus on improving pedestrian safety within intelligent cities using AI, specifically support vector machine (SVM). Leveraging machine learning and authentic pedestrian behavior data, the SVM model outperforms others in predicting crossing probabilities and speeds, demonstrating its potential for enhancing road traffic safety and integrating with intelligent traffic simulations. The study emphasizes the significance of SVM in accurately predicting real-time pedestrian behaviors, contributing to refined decision models for safer road designs.
This article presents a novel workflow for generating high-resolution lithology logs from conventional well logs, addressing challenges in multiclass imbalanced data classification. The enhanced weighted average ensemble approach, incorporating error-correcting output code (ECOC) and cost-sensitive learning (CSL) techniques, outperforms traditional machine learning algorithms.
Researchers proposed an IoT and ML-based approach to analyze ornamental goldfish behavior in response to environmental changes, particularly real-time water temperature and dissolved oxygen concentration. Utilizing IoT sensors and machine learning classifiers like Decision Tree, Naïve Bayes, Linear Discriminant Analysis, and K-Nearest Neighbor, the study demonstrated the effectiveness of the Decision Tree classifier in accurately classifying behavioral changes.
This research investigates the determinants of earthquake insurance uptake in Oklahoma post-2011 seismic events. Through supervised machine learning, it identifies influential factors including age, gender, ethnicity, political affiliation, tenure, housing status, education, income, earthquake experience, and environmental attitudes. The study emphasizes the significance of awareness and advanced machine learning tools for predictive modeling in managing environmental risks and advocates for informed disaster management strategies.
Terms
While we only use edited and approved content for Azthena
answers, it may on occasions provide incorrect responses.
Please confirm any data provided with the related suppliers or
authors. We do not provide medical advice, if you search for
medical information you must always consult a medical
professional before acting on any information provided.
Your questions, but not your email details will be shared with
OpenAI and retained for 30 days in accordance with their
privacy principles.
Please do not ask questions that use sensitive or confidential
information.
Read the full Terms & Conditions.