A neural network is a computational model inspired by the structure and function of the human brain. It consists of interconnected artificial neurons that process and transmit information, enabling machine learning tasks such as pattern recognition, classification, and regression by learning from labeled data.
This study introduces a novel spiking neural network (SNN) based model for predicting brain activity patterns in response to visual stimuli, addressing differences between artificial neural networks and biological neurons. The SNN approach outperforms traditional models, showcasing its potential for applications in neuroscience, bioengineering, and brain-computer interfaces.
A new study led by North Carolina State University reveals that an AI capable of self-examination performs better when it opts for neural diversity over uniformity. This "meta-learning" approach makes the AI up to 10 times more accurate in complex tasks, such as predicting the motion of galaxies, compared to conventional, homogenous neural networks.
Researchers use artificial neural networks (ANN) to classify UNESCO World Heritage Sites (WHS) and evaluate the impact of input variables on classification outcomes. The study compares multilayer perceptron (MLP) and radial basis function (RBF) neural networks, highlighting the significance of feature selection and the trade-off between evaluation time and accuracy.
Researchers propose a novel approach for accurate drug classification using a smartphone Raman spectrometer and a convolutional neural network (CNN). The system captures two-dimensional Raman spectral intensity maps and spectral barcodes of drugs, allowing the identification of chemical components and drug brand names.
Researchers present an open-source gaze-tracking solution for smartphones, using machine learning to achieve accurate eye tracking without the need for additional hardware. By utilizing convolutional neural networks and support vector regression, this approach achieves high levels of accuracy comparable to costly mobile trackers.
Researchers present an innovative approach to train compact neural networks for multitask learning scenarios. By overparameterizing the network during training and sharing parameters effectively, this method enhances optimization and generalization, opening possibilities for embedding intelligent capabilities in various domains like robotics, autonomous systems, and mobile devices.
Researchers present an AI-driven solution for autonomous cars, leveraging neural networks and computer vision algorithms to achieve successful autonomous driving in a simulated environment and real-world competition, marking a significant step toward safer and efficient self-driving technology.
Researchers harness the power of pseudo-labeling within semi-supervised learning to revolutionize animal identification using computer vision systems. They also explored how this technique leverages unlabeled data to significantly enhance the predictive performance of deep neural networks, offering a breakthrough solution for accurate and efficient animal identification in resource-intensive agricultural environments.
This review explores how fuzzy logic, neural networks, and optimization algorithms hold immense promise in predicting, diagnosing, and detecting CVD. By handling complex medical uncertainties and delivering accurate and affordable insights, soft computing has the potential to transform cardiovascular care, especially in resource-limited settings, and significantly improve clinical outcomes.
Researchers have introduced an innovative asymmetric hybrid encoder-decoder (AHED) deep learning (DL) algorithm designed for accurate multivariate time series forecasting of building energy consumption. The article, pending publication in Applied Energy, addresses the pressing need for effective energy management in buildings by harnessing advanced DL techniques to predict complex energy usage patterns.
Researchers delve into the realm of surface electromyography (sEMG), an emerging technology with promising applications in muscle-controlled robots through human-machine interfaces (HMIs). This study, featured in the journal Applied Sciences, delves into the intricacies of sEMG-based robot control, from signal processing and classification to innovative control strategies.
Researchers have unveiled an innovative solution to the energy efficiency challenges posed by high-parameter AI models. Through analog in-memory computing (analog-AI), they developed a chip boasting 35 million memory devices, showcasing exceptional performance of up to 12.4 tera-operations per second per watt (TOPS/W). This breakthrough combines parallel matrix computations with memory arrays, presenting a transformative approach for efficient AI processing with promising implications for diverse applications.
This article presents an innovative approach that utilizes learned dynamic phase coding for reconstructing videos from single-motion blurred images. By integrating a convolutional neural network (CNN) and a learnable imaging layer, the proposed method overcomes challenges associated with motion blur in dynamic scene photography.
Researchers have introduced an innovative approach to bridge the gap between Text-to-Image (T2I) AI technology and the lagging development of Text-to-Video (T2V) models. They propose a "Simple Diffusion Adapter" (SimDA) that efficiently adapts a strong T2I model for T2V tasks, incorporating lightweight spatial and temporal adapters.
Researchers introduce the VALERIE synthesis pipeline, presenting the VALERIE22 synthetic dataset. This dataset, created for understanding neural network perception in autonomous driving, features photorealistic scenes, rich metadata, and outperforms other synthetic datasets in cross-domain evaluations, marking a significant leap in open-domain synthetic data quality.
In a recent Scientific Reports paper, researchers unveil an innovative technique for deducing 3D mouse postures from monocular videos. The Mouse Pose Analysis Dataset, equipped with labeled poses and behaviors, accompanies this method, offering a groundbreaking resource for animal physiology and behavior research, with potential applications in health prediction and gait analysis.
Researchers present LightSpaN, a streamlined Convolutional Neural Network (CNN)-based solution for swift and accurate vehicle identification in intelligent traffic monitoring systems powered by the Internet of Things (IoT). This innovative approach outperforms existing methods with an average accuracy of 99.9% for emergency vehicles, contributing to reduced waiting and travel times.
Researchers introduce a novel approach to boost audio-visual speech recognition (AVSR) systems using cross-modal fusion and visual pre-training. By correlating lip movements to subword units and utilizing a guided neural network, this technique achieves improved AVSR performance without requiring additional complex training data, showcasing its efficacy on the MISP2021-AVSR dataset.
Researchers propose a hybrid model that integrates sentiment analysis using Word2vec and Long Short-Term Memory (LSTM) for accurate exchange rate trend prediction. By incorporating emotional weights from Weibo data and historical exchange rate information, combined with CNN-LSTM architecture, the model demonstrates enhanced prediction accuracy compared to traditional methods.
Researchers combine deep neural networks (DNN) with a PID-RENet (Proportional-Integral-Derivative Residual Elimination Network) to improve time-series water quality predictions in aquaculture. The PID-RENet approach effectively corrects DNN predictions using PID control principles, leading to more accurate forecasts for crucial water quality parameters.
Terms
While we only use edited and approved content for Azthena
answers, it may on occasions provide incorrect responses.
Please confirm any data provided with the related suppliers or
authors. We do not provide medical advice, if you search for
medical information you must always consult a medical
professional before acting on any information provided.
Your questions, but not your email details will be shared with
OpenAI and retained for 30 days in accordance with their
privacy principles.
Please do not ask questions that use sensitive or confidential
information.
Read the full Terms & Conditions.